Trustformer: A Trusted Federated Transformer
- URL: http://arxiv.org/abs/2501.11706v1
- Date: Mon, 20 Jan 2025 19:38:50 GMT
- Title: Trustformer: A Trusted Federated Transformer
- Authors: Ali Abbasi Tadi, Dima Alhadidi, Luis Rueda,
- Abstract summary: Transformer models have driven the rise of large language models (LLMs)
Privacy-preserving techniques like Federated Learning (FL) offer potential solutions, but practical limitations hinder their effectiveness for Transformer training.
This paper introduces a novel FL method that reduces communication overhead while maintaining competitive utility.
- Score: 0.24578723416255746
- License:
- Abstract: Transformers, a cornerstone of deep-learning architectures for sequential data, have achieved state-of-the-art results in tasks like Natural Language Processing (NLP). Models such as BERT and GPT-3 exemplify their success and have driven the rise of large language models (LLMs). However, a critical challenge persists: safeguarding the privacy of data used in LLM training. Privacy-preserving techniques like Federated Learning (FL) offer potential solutions, but practical limitations hinder their effectiveness for Transformer training. Two primary issues are (I) the risk of sensitive information leakage due to aggregation methods like FedAvg or FedSGD, and (II) the high communication overhead caused by the large size of Transformer models. This paper introduces a novel FL method that reduces communication overhead while maintaining competitive utility. Our approach avoids sharing full model weights by simulating a global model locally. We apply k-means clustering to each Transformer layer, compute centroids locally, and transmit only these centroids to the server instead of full weights or gradients. To enhance security, we leverage Intel SGX for secure transmission of centroids. Evaluated on a translation task, our method achieves utility comparable to state-of-the-art baselines while significantly reducing communication costs. This provides a more efficient and privacy-preserving FL solution for Transformer models.
Related papers
- One-shot Federated Learning via Synthetic Distiller-Distillate Communication [63.89557765137003]
One-shot Federated learning (FL) is a powerful technology facilitating collaborative training of machine learning models in a single round of communication.
We propose FedSD2C, a novel and practical one-shot FL framework designed to address these challenges.
arXiv Detail & Related papers (2024-12-06T17:05:34Z) - Communication-Efficient and Tensorized Federated Fine-Tuning of Large Language Models [24.07770417615704]
We introduce FedTT and FedTT+, methods for adapting Large Language Models.
FedTT is versatile and can be applied to both cross-silo FL and large-scale cross-device FL.
Our proposed methods successfully address data heterogeneity challenges and perform on par or even better than existing federated PEFT approaches.
arXiv Detail & Related papers (2024-10-16T23:50:39Z) - ACCESS-FL: Agile Communication and Computation for Efficient Secure Aggregation in Stable Federated Learning Networks [26.002975401820887]
Federated Learning (FL) is a distributed learning framework designed for privacy-aware applications.
Traditional FL approaches risk exposing sensitive client data when plain model updates are transmitted to the server.
Google's Secure Aggregation (SecAgg) protocol addresses this threat by employing a double-masking technique.
We propose ACCESS-FL, a communication-and-computation-efficient secure aggregation method.
arXiv Detail & Related papers (2024-09-03T09:03:38Z) - Gradient-Congruity Guided Federated Sparse Training [31.793271982853188]
Federated learning (FL) is a distributed machine learning technique that facilitates this process while preserving data privacy.
FL also faces challenges such as high computational and communication costs regarding resource-constrained devices.
We propose the Gradient-Congruity Guided Federated Sparse Training (FedSGC), a novel method that integrates dynamic sparse training and gradient congruity inspection into federated learning framework.
arXiv Detail & Related papers (2024-05-02T11:29:48Z) - Heterogeneous Federated Learning with Splited Language Model [22.65325348176366]
Federated Split Learning (FSL) is a promising distributed learning paradigm in practice.
In this paper, we harness Pre-trained Image Transformers (PITs) as the initial model, coined FedV, to accelerate the training process and improve model robustness.
We are the first to provide a systematic evaluation of FSL methods with PITs in real-world datasets, different partial device participations, and heterogeneous data splits.
arXiv Detail & Related papers (2024-03-24T07:33:08Z) - Unleashing the Power of Pre-trained Language Models for Offline Reinforcement Learning [50.9692060692705]
This paper introduces $textbfLanguage Models for $textbfMo$tion Control ($textbfLaMo$), a general framework based on Decision Transformers for offline RL.
Our framework highlights four crucial components:.
Initializing Decision Transformers with sequentially pre-trained LMs, (2) employing the LoRA fine-tuning method,.
In particular, our method demonstrates superior performance in scenarios with limited data samples.
arXiv Detail & Related papers (2023-10-31T16:24:17Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning (FL) has emerged as a promising distributed machine learning framework to preserve clients' privacy.
Recent studies find that an attacker can invert the shared gradients and recover sensitive data against an FL system by leveraging pre-trained generative adversarial networks (GAN) as prior knowledge.
We propose textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD), which disassembles the GAN model and searches the feature domains of the intermediate layers.
arXiv Detail & Related papers (2023-08-09T04:34:21Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z) - Continual Local Training for Better Initialization of Federated Models [14.289213162030816]
Federated learning (FL) refers to the learning paradigm that trains machine learning models directly in decentralized systems.
The popular FL algorithm emphFederated Averaging (FedAvg) suffers from weight divergence.
We propose the local continual training strategy to address this problem.
arXiv Detail & Related papers (2020-05-26T12:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.