Two-photon Interference of Biphotons Emitted by Overlapping Resonances in Metasurfaces
- URL: http://arxiv.org/abs/2501.11850v1
- Date: Tue, 21 Jan 2025 03:07:58 GMT
- Title: Two-photon Interference of Biphotons Emitted by Overlapping Resonances in Metasurfaces
- Authors: Jiho Noh, Tomás Santiago-Cruz, Chloe F. Doiron, Hyunseung Jung, Jaeyeon Yu, Sadhvikas J. Addamane, Maria V. Chekhova, Igal Brener,
- Abstract summary: Two-photon interference is a powerful tool for quantum state engineering.
Quantum optical metasurfaces (QOMs) are emerging as promising platforms for quantum light generation.
Here we develop QOMs based on [110]-oriented GaAs that provide more than an order of magnitude enhancement in SPDC rate.
This boosted efficiency allows the QOMs support the simultaneous generation of SPDC from several spectrally overlapping optical modes.
- Score: 0.0903415485511869
- License:
- Abstract: Two-photon interference, a quantum phenomenon arising from the principle of indistinguishability, is a powerful tool for quantum state engineering and plays a fundamental role in various quantum technologies. These technologies demand robust and efficient sources of quantum light, as well as scalable, integrable and multifunctional platforms. In this regard, quantum optical metasurfaces (QOMs) are emerging as promising platforms for quantum light generation, namely biphotons via spontaneous parametric down-conversion (SPDC), and its engineering. Due to the relaxation of phase matching, SPDC in QOMs allows different channels of biphoton generation, such as those supported by overlapping resonances, to occur simultaneously. In previously reported QOMs, however, SPDC was too weak to observe such effects. Here we develop QOMs based on [110]-oriented GaAs that provide more than an order of magnitude enhancement in SPDC rate, after accounting for the spectral bandwidth, compared to any other QOMs studied to date. This boosted efficiency allows the QOMs support the simultaneous generation of SPDC from several spectrally overlapping optical modes. Using polarization components in the interferometer analyzer, we intentionally erase the distinguishability between the biphotons from a high-$Q$ quasi-bound-state-in-the-continuum resonance and a low-$Q$ Mie resonance, which results in the first-time observation of two-photon interference in the spectral domain in these types of devices. This quantum interference can considerably enrich the generation of entangled photons in metasurfaces. Their advanced multifunctionality, improved nonlinear response, ease of fabrication and compact footprint of [110]-GaAs QOMs position them as promising platforms to fulfill the requirements for photonic quantum technologies.
Related papers
- Coherent spectroscopy of a single Mn-doped InGaAs quantum dot [0.0]
Doping a self-assembled InGaAs/GaAs quantum dot with a single Mn atom provides a quantum system with discrete energy levels and original spin-dependent optical selection rules.
We show evidence for quantum interference within the V-like system and assess the pure dephasing rate between the corresponding spin states.
arXiv Detail & Related papers (2024-10-25T13:03:40Z) - Manipulating multiple optical parametric processes in photonic
topological insulators [6.655289256837963]
We show two distinct edge modes corresponding to different frequency ranges in both sandwich kagome and honeycomb topological designs.
These two topological edge modes enable two types of optical parametric processes through four-wave mixing.
The devices emulating photonic valley-Hall insulators allow the frequency division of two transverse modes.
arXiv Detail & Related papers (2024-01-12T07:29:36Z) - Enhanced coherent light-matter interaction and room-temperature quantum
yield of plasmonic resonances engineered by a chiral exceptional point [1.074267520911262]
We propose to tailor the local density of states (LDOS) of plasmonic resonances by integrating with a photonic cavity operating at a chiral exceptional point (CEP)
A quantized few-mode theory is employed to reveal that the LDOS of the proposed hybrid cavity can evolve into sub-tzian lineshape, with order-of-magnitude linewidth narrowing.
This results in the enhanced coherent light-matter interaction accompanied by the reduced dissipation of polaritonic states.
arXiv Detail & Related papers (2023-08-08T13:10:04Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Dual-Resonance Enhanced Quantum Light-Matter Interactions In
Deterministically Coupled Quantum-Dot-Micopillars [5.591935162585717]
We present versatile accessing of dual-resonance conditions in deterministically coupled quantum-dot(QD)-micopillars.
We exploit the vectorial nature of the high-order cavity modes to significantly improve the excitation efficiency under the dual-resonance condition.
The dual-resonance enhanced light-matter interactions in the quantum regime provides a viable path for developing integrated quantum photonic devices.
arXiv Detail & Related papers (2021-05-12T07:33:58Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.