論文の概要: Harnessing Chiral Spin States in Molecular Nanomagnets for Quantum Technologies
- arxiv url: http://arxiv.org/abs/2501.11964v2
- Date: Wed, 23 Apr 2025 19:18:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-25 21:09:46.439605
- Title: Harnessing Chiral Spin States in Molecular Nanomagnets for Quantum Technologies
- Title(参考訳): 量子技術の分子ナノマグネットにおけるキラルスピン状態の調和
- Authors: Aman Ullah, Ziqi Hu, Juan Aragó, Alejandro Gaita-Ariño,
- Abstract要約: キラル量子ビットは、弱結合量子ビットではオフにできない常時オン相互作用を自然に抑制することを示した。
本研究は, スピンキラリティ工学を分子量子技術における2つのキラリティ量子ビットの絡み合いにおいて, 常時オン相互作用を緩和するための有望な戦略として確立した。
- 参考スコア(独自算出の注目度): 44.1973928137492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a theoretical framework to investigate spin chirality in molecular quantum systems. Focusing on a minimal three-spin-center model with antiferromagnetic exchange and symmetry breaking driven by an electric-field-induced Dzyaloshinskii-Moriya interaction and applied magnetic fields-give rise to chiral ground states characterized by nonzero scalar spin chirality, $\chi = \textbf{S}_1\cdot(\textbf{S}_r\times \textbf{S}_2)$. The emergent chiral qubits naturally suppress always-on interactions that can not be switched off in weakly coupled qubits, as demonstrated through Liouville-von Neumann dynamics, which reveal phase difference in superposition states that form chiral qubits. To validate this framework, we examine realistic lanthanide complexes with radical-bridged magnetic centers, where spin-orbit coupling and asymmetric exchange facilitate chirality. Our findings establish spin chirality engineering as a promising strategy for mitigating always-on interaction in entangling two chiral qubits in molecular quantum technologies.
- Abstract(参考訳): 分子量子系におけるスピンキラリティの理論的枠組みを提案する。
電場誘起ジアロシンスキー-モリヤ相互作用により駆動される反強磁性交換および対称性破壊を伴う最小3スピン中心モデルと、非ゼロスカラースピンキラリティを特徴とするキラル基底状態への磁場-ギブアップの適用、$\chi = \textbf{S}_1\cdot(\textbf{S}_r\times \textbf{S}_2)$。
創発的なカイラル量子ビットは、カイラル量子ビットを形成する重ね合わせ状態の位相差を明らかにするリウヴィル・ヴォン・ノイマン力学(英語版)によって示されるように、弱結合量子ビットではオフにできない常にオンな相互作用を自然に抑制する。
この枠組みを検証するために、スピン軌道結合と非対称交換がキラリティーを促進するラジカル架橋磁気中心を持つ現実的なランタニド錯体を検証した。
本研究は, スピンキラリティ工学を分子量子技術における2つのキラリティ量子ビットの絡み合いにおいて, 常時オン相互作用を緩和するための有望な戦略として確立した。
関連論文リスト
- Conventional and unconventional Dicke models: Multistabilities and
nonequilibrium dynamics [0.0]
熱力学限界における系の安定性と力学を, 半古典的手法を用いて検討した。
我々は、半古典的な計算結果と一致して、小型の完全量子力学計算を行う。
論文 参考訳(メタデータ) (2023-07-11T18:00:12Z) - Enhanced tripartite interactions in spin-magnon-mechanical hybrid
systems [0.0]
1つのNV中心とマイクロマグネットからなるハイブリッドセットアップにおける三部結合機構を予測した。
我々は,NV中心とマイクロマグネット間の相対運動を変調することにより,単一NVスピン,マグノン,フォノン間の直接的および強三部構造相互作用を実現することを提案する。
論文 参考訳(メタデータ) (2023-01-25T06:31:27Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
特定の化学反応における磁場効果(MFE)は、過去50年間によく確立されてきた。
我々は、局所的なスピン環境とセンサーとの結合を考慮して、ラジカル対の精巧で現実的なモデルを採用する。
2つのモデル系に対して、ラジカル対とNV量子センサの弱い結合状態においても検出可能なMFEの信号を導出する。
論文 参考訳(メタデータ) (2022-09-28T12:56:15Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
ダイヤモンド結晶表面上の電子スピンの2次元アンサンブルにおける個々のスピンダイナミクスを実験的に検討した。
この不規則に緩やかな緩和速度は、強い力学障害の存在によるものであることを示す。
我々の研究は、強く相互作用する無秩序なスピンアンサンブルにおける量子熱化の微視的研究と制御への道を開いた。
論文 参考訳(メタデータ) (2022-07-21T18:00:17Z) - Emergence of Spinmerism for Molecular Spin-Qubits Generation [0.0]
スピンクロスオーバー金属イオンとラジカルを組み合わせた戦略は、最初に交換相互作用に制限されたモデルから提案されている。
スピン状態構造は、2つのダブルトラジカルを持つ一重項/三重項可換金属中心の結合から現れる。
スピンカップリング化合物の知見と分子スピン量子ビットの開発へのインスピレーションを提供する。
論文 参考訳(メタデータ) (2022-06-08T15:54:32Z) - Understanding the propagation of excitations in quantum spin chains with
different kind of interactions [68.8204255655161]
不均一鎖は、ほぼ完全な忠実度で励起を伝達することができることが示されている。
どちらの設計鎖も、部分的に順序付けられたスペクトルとよく局在した固有ベクトルを持つことが示されている。
論文 参考訳(メタデータ) (2021-12-31T15:09:48Z) - Bound state dynamics in the long-range spin-$\frac{1}{2}$ XXZ model [0.0]
長距離スピン-1/2$ XXZ ハイゼンベルクハミルトニアンにおけるそのような非局所結合の効果について検討する。
スピン-スピン結合の高速崩壊には、2スピンエネルギースペクトルがよく定義された離散値によって特徴づけられることが分かる。
一方、2スピン境界状態は有効反強磁性状態の動的安定化を可能にする。
論文 参考訳(メタデータ) (2021-10-05T00:33:50Z) - Bell-state generation for spin qubits via dissipative coupling [3.011018394325566]
磁気媒体と相互作用する2つのスピン量子ビットのダイナミクスについて検討する。
磁気環境を通した巨大長寿命の絡み合いがいかに成立するかを示す。
我々の研究は、量子情報科学、量子スピントロニクス、および非局所量子相関の検知に応用できるかもしれない。
論文 参考訳(メタデータ) (2021-08-16T22:36:48Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
固体中の核スピンは環境に弱く結合し、量子情報処理と慣性センシングの魅力的な候補となる。
我々は、原子核スピンコヒーレンス時間よりも高速で1,kHzで物理的に回転するダイヤモンド中の光核スピン偏光と原子核スピンの高速量子制御を実証した。
我々の研究は、それまで到達不可能だったNV核スピンの自由を解放し、量子制御と回転センシングに対する新しいアプローチを解き放つ。
論文 参考訳(メタデータ) (2021-07-27T03:39:36Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
スピンバス相互作用は強い異方性を持ち、高速な物理的回転は長い間、固体核磁気共鳴に用いられてきた。
窒素空孔中心の電子スピンと13ドルCの核スピンとの相互作用がシステムにデコヒーレンスをもたらすことを示す。
我々の発見は、量子制御における物理回転の利用に関する新たな知見を提供し、固定されていない運動度と回転度を持つ量子系に意味を持つ。
論文 参考訳(メタデータ) (2021-05-16T06:15:00Z) - Quantum simulation of antiferromagnetic Heisenberg chain with
gate-defined quantum dots [0.0]
磁気相はフェルミ・ハッバード模型のモット絶縁体系に自然に生じる。
線形量子ドットアレイを用いたモット絶縁体系における磁性の量子シミュレーションを示す。
論文 参考訳(メタデータ) (2021-03-15T09:45:02Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
単核ニッケル錯体の電子スピン準位が最も低い2つの電子準位の間に、大きさの大きい量子トンネル分割が存在することを報告する。
このギャップに関連するレベルの反交差(磁気時計遷移)は、熱容量実験によって直接監視されている。
これらの結果と、対称性によってトンネルが禁止されているCo誘導体との比較は、クロック遷移が分子間スピン-スピン相互作用を効果的に抑制することを示している。
論文 参考訳(メタデータ) (2021-03-04T13:31:40Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
本研究では,核スピン浴と相互作用する常磁性欠陥の量子力学について検討した。
提案された理論的アプローチは、第一原理からスピン量子ビットのコヒーレンス特性を設計する方法を舗装する。
論文 参考訳(メタデータ) (2020-10-21T15:37:59Z) - Dynamic magnetization in non-Hermitian quantum spin system [0.0]
高次の例外点から(N+1)レベルの合体は、N$サイズの量子スピン鎖に適用される臨界局所複素体で生成される。
量子スピン系における非ハーミティシティと相互作用の協調性に注目した。
論文 参考訳(メタデータ) (2020-06-02T00:41:45Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
2次元双極子系、$d=2$、一般化双極子-双極子相互作用$sim r-a$、トラップイオン系やリドバーグ原子系で実験的に制御されたパワー$a$を考える。
異方性双極子交換を引き起こす双極子の空間的に均質な傾き$$beta$は、ロケータ展開を超えた非自明な再帰的局在をもたらすことを示す。
論文 参考訳(メタデータ) (2020-01-31T19:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。