論文の概要: Communication-Efficient and Privacy-Adaptable Mechanism for Federated Learning
- arxiv url: http://arxiv.org/abs/2501.12046v1
- Date: Tue, 21 Jan 2025 11:16:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:21:21.331775
- Title: Communication-Efficient and Privacy-Adaptable Mechanism for Federated Learning
- Title(参考訳): フェデレーション学習におけるコミュニケーション効率とプライバシ適応メカニズム
- Authors: Chih Wei Ling, Youqi Wu, Jiande Sun, Cheuk Ting Li, Linqi Song, Weitao Xu,
- Abstract要約: フェデレートラーニング(FL)による分散プライベートデータに基づく機械学習モデルのトレーニングは、コミュニケーション効率とプライバシ保護という2つの大きな課題を提起する。
本稿では,CEPAM(Communication-Efficient and Privacy-Adaptable Mechanism)と呼ばれる新しい手法を導入し,両目的を同時に達成する。
ユーザプライバシ,グローバルユーティリティ,CEPAMの送信速度のトレードオフを,差分プライバシーと圧縮によるFLの適切なメトリクスを定義することによって分析する。
- 参考スコア(独自算出の注目度): 33.267664801299354
- License:
- Abstract: Training machine learning models on decentralized private data via federated learning (FL) poses two key challenges: communication efficiency and privacy protection. In this work, we address these challenges within the trusted aggregator model by introducing a novel approach called the Communication-Efficient and Privacy-Adaptable Mechanism (CEPAM), achieving both objectives simultaneously. In particular, CEPAM leverages the rejection-sampled universal quantizer (RSUQ), a construction of randomized vector quantizer whose resulting distortion is equivalent to a prescribed noise, such as Gaussian or Laplace noise, enabling joint differential privacy and compression. Moreover, we analyze the trade-offs among user privacy, global utility, and transmission rate of CEPAM by defining appropriate metrics for FL with differential privacy and compression. Our CEPAM provides the additional benefit of privacy adaptability, allowing clients and the server to customize privacy protection based on required accuracy and protection. We assess CEPAM's utility performance using MNIST dataset, demonstrating that CEPAM surpasses baseline models in terms of learning accuracy.
- Abstract(参考訳): フェデレートラーニング(FL)による分散プライベートデータに基づく機械学習モデルのトレーニングは、コミュニケーション効率とプライバシ保護という2つの大きな課題を提起する。
本研究では,コミュニケーション効率・プライバシ適応メカニズム(CEPAM)と呼ばれる新しいアプローチを導入し,両目標を同時に達成することで,信頼集約モデル内のこれらの課題に対処する。
特に、CEPAMは、ガウスノイズやラプラスノイズのような所定の雑音に等しい歪みをもたらすランダム化されたベクトル量子化器(RSUQ)の構築であり、共同微分プライバシーと圧縮を可能にする。
さらに、ユーザプライバシ、グローバルユーティリティ、CEPAMの送信速度のトレードオフを、差分プライバシと圧縮によるFLの適切なメトリクスを定義することによって分析する。
当社のCEPAMは、クライアントとサーバが、必要な精度と保護に基づいて、プライバシ保護をカスタマイズできるように、プライバシ適応性のさらなるメリットを提供します。
MNISTデータセットを用いてCEPAMの実用性能を評価し,CEPAMが学習精度においてベースラインモデルを上回ることを示す。
関連論文リスト
- The Communication-Friendly Privacy-Preserving Machine Learning against Malicious Adversaries [14.232901861974819]
プライバシー保護機械学習(PPML)は、機密情報を保護しながらセキュアなデータ分析を可能にする革新的なアプローチである。
セキュアな線形関数評価のための効率的なプロトコルを導入する。
我々は、このプロトコルを拡張して、線形層と非線形層を扱い、幅広い機械学習モデルとの互換性を確保する。
論文 参考訳(メタデータ) (2024-11-14T08:55:14Z) - CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated Learning (FL)は、分散機械学習のための有望なフレームワークとして登場した。
相関2値量子化を用いて差分プライバシーを実現するプライバシー機構であるCorBin-FLを導入する。
また,PLDP,ユーザレベル,サンプルレベルの中央差分プライバシー保証に加えて,AugCorBin-FLも提案する。
論文 参考訳(メタデータ) (2024-09-20T00:23:44Z) - The Effect of Quantization in Federated Learning: A Rényi Differential Privacy Perspective [15.349042342071439]
フェデレートラーニング(FL)は、分散データを使用したプライバシ保護機械学習を大いに約束する新興パラダイムである。
プライバシーを強化するために、FLはモデルの重み付けにガウスノイズを加えることを含む差分プライバシー(DP)と組み合わせることができる。
本研究では,FLシステムにおける量子化がプライバシに与える影響について検討する。
論文 参考訳(メタデータ) (2024-05-16T13:50:46Z) - Libertas: Privacy-Preserving Computation for Decentralised Personal Data Stores [19.54818218429241]
セキュアなマルチパーティ計算をSolidと統合するためのモジュール設計を提案する。
私たちのアーキテクチャであるLibertasでは、基盤となるSolidの設計にプロトコルレベルの変更は必要ありません。
既存の差分プライバシー技術と組み合わせて、出力プライバシーを確保する方法を示す。
論文 参考訳(メタデータ) (2023-09-28T12:07:40Z) - Binary Federated Learning with Client-Level Differential Privacy [7.854806519515342]
フェデレートラーニング(Federated Learning、FL)は、プライバシ保護のための協調学習フレームワークである。
既存のFLシステムはトレーニングアルゴリズムとしてフェデレーション平均(FedAvg)を採用するのが一般的である。
差分プライバシーを保証する通信効率のよいFLトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-07T06:07:04Z) - Differentially Private Wireless Federated Learning Using Orthogonal
Sequences [56.52483669820023]
本稿では,FLORAS と呼ばれる AirComp 法を提案する。
FLORASはアイテムレベルとクライアントレベルの差分プライバシー保証の両方を提供する。
新たなFL収束バウンダリが導出され、プライバシー保証と組み合わせることで、達成された収束率と差分プライバシーレベルのスムーズなトレードオフが可能になる。
論文 参考訳(メタデータ) (2023-06-14T06:35:10Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
モデルパラメータを歪ませることでプライバシを保護する保護機構の一般学習フレームワークを提案する。
フェデレートされた学習における各コミュニケーションラウンドにおいて、各クライアント上の各モデルパラメータに対して、パーソナライズされたユーティリティプライバシトレードオフを実現することができる。
論文 参考訳(メタデータ) (2023-05-24T13:44:02Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - Over-the-Air Federated Learning with Privacy Protection via Correlated
Additive Perturbations [57.20885629270732]
我々は、複数のユーザ/エージェントからエッジサーバへの勾配更新をOtA(Over-the-Air)で送信することで、無線フェデレーション学習のプライバシー面を考察する。
従来の摂動に基づく手法は、トレーニングの精度を犠牲にしてプライバシー保護を提供する。
本研究では,エッジサーバにおけるプライバシリークの最小化とモデル精度の低下を目標とする。
論文 参考訳(メタデータ) (2022-10-05T13:13:35Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。