論文の概要: ORCAst: Operational High-Resolution Current Forecasts
- arxiv url: http://arxiv.org/abs/2501.12054v1
- Date: Tue, 21 Jan 2025 11:26:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:20:50.602239
- Title: ORCAst: Operational High-Resolution Current Forecasts
- Title(参考訳): ORCAst:オペレーショナル・ハイリゾリューション・カレント予測
- Authors: Pierre Garcia, Inès Larroche, Amélie Pesnec, Hannah Bull, Théo Archambault, Evangelos Moschos, Alexandre Stegner, Anastase Charantonis, Dominique Béréziat,
- Abstract要約: ORCAstは、オペレーショナル・ハイ・リゾリューション・カレントのためのマルチステージマルチアームネットワークである。
本モデルでは, 様々な地中真実観測源を用いて, 地球表面の海流の予測を学習する。
- 参考スコア(独自算出の注目度): 36.614535202321235
- License:
- Abstract: We present ORCAst, a multi-stage, multi-arm network for Operational high-Resolution Current forecAsts over one week. Producing real-time nowcasts and forecasts of ocean surface currents is a challenging problem due to indirect or incomplete information from satellite remote sensing data. Entirely trained on real satellite data and in situ measurements from drifters, our model learns to forecast global ocean surface currents using various sources of ground truth observations in a multi-stage learning procedure. Our multi-arm encoder-decoder model architecture allows us to first predict sea surface height and geostrophic currents from larger quantities of nadir and SWOT altimetry data, before learning to predict ocean surface currents from much more sparse in situ measurements from drifters. Training our model on specific regions improves performance. Our model achieves stronger nowcast and forecast performance in predicting ocean surface currents than various state-of-the-art methods.
- Abstract(参考訳): 本稿では,多段マルチアームネットワークであるORCAstを1週間以上にわたって紹介する。
衛星リモートセンシングデータから間接的または不完全な情報を得るため、海面電流のリアルタイムの流速や予測は難しい問題である。
実際の衛星データと漂流機からのその場測定に基づいて,多段階学習法を用いて地上真実観測の様々な源泉を用いて海表面の海流を予測した。
我々のマルチアームエンコーダ・デコーダモデルアーキテクチャは、漂流機からより希薄なin situ測定から海面電流を予測する前に、大量のナディルおよびSWOT高度データから海面高さと地栄養流を予測できる。
特定の領域でモデルをトレーニングすることで、パフォーマンスが向上します。
本モデルでは, 海面流の予測において, 各種の最先端手法よりも強い流速と予測性能を実現する。
関連論文リスト
- Multi-Source Temporal Attention Network for Precipitation Nowcasting [4.726419619132143]
降水量は様々な産業で重要であり、気候変動の緩和と適応に重要な役割を果たしている。
降水量予測のための効率的な深層学習モデルを導入し,既存の運用モデルよりも高い精度で降雨を最大8時間予測する。
論文 参考訳(メタデータ) (2024-10-11T09:09:07Z) - Continual Learning of Range-Dependent Transmission Loss for Underwater Acoustic using Conditional Convolutional Neural Net [0.0]
本研究では,遠方界シナリオにおける水中放射音予測のための深層学習モデルの精度向上を目的としている。
そこで本稿では,海洋浴量測定データを入力に組み込んだ新しいレンジ条件畳み込みニューラルネットワークを提案する。
提案アーキテクチャは, 帯域依存性の異なる様々な浴量測定プロファイル上での透過損失を効果的に捕捉する。
論文 参考訳(メタデータ) (2024-04-11T19:13:38Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Evaluation of Deep Neural Operator Models toward Ocean Forecasting [0.3774866290142281]
ディープ・ニューラル・オペレーター・モデルは、古典的な流体の流れと現実的な海洋力学のシミュレーションを予測することができる。
我々はまず,シリンダーを過ぎる2次元流体の模擬実験で,このような深部ニューラルネットワークモデルの能力を評価する。
次に,中部大西洋帯およびマサチューセッツ湾における海洋表層循環予測への応用について検討した。
論文 参考訳(メタデータ) (2023-08-22T22:38:54Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
洪水浸水予測は洪水前後の緊急計画に重要な情報を提供する。
近年,高分解能な流体力学モデリングが普及しつつあるが,道路の洪水範囲やリアルタイムのビルディングレベルは依然として計算的に要求されている。
洪水範囲と浸水深度予測のためのハイブリッドプロセスベースおよびデータ駆動機械学習(ML)アプローチを提案する。
論文 参考訳(メタデータ) (2023-07-29T22:49:50Z) - Fully Convolutional Networks for Dense Water Flow Intensity Prediction
in Swedish Catchment Areas [7.324969824727792]
本研究では,内陸海域における水流強度を予測するための機械学習によるアプローチを提案する。
我々は高密度水流強度予測の課題に最初に取り組みました。
論文 参考訳(メタデータ) (2023-04-04T09:28:36Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting [52.77986479871782]
地球温暖化は北極を海洋活動に利用し、信頼性の高い海氷予測の需要を生み出した。
本研究では,海氷予測のためのU-Netモデルの性能を,今後10日間にわたって検証した。
この深層学習モデルは、気象データの追加と複数の地域での訓練により、単純なベースラインをかなりの差で上回り、その品質を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-10-17T09:14:35Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
水中音響から風速時系列を検索するための深層学習手法を提案する。
我々のアプローチは、事前の物理知識と計算効率の両面から恩恵を受けるために、データ同化と学習ベースのフレームワークをブリッジする。
論文 参考訳(メタデータ) (2022-08-18T15:27:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。