Efficient PINNs: Multi-Head Unimodular Regularization of the Solutions Space
- URL: http://arxiv.org/abs/2501.12116v1
- Date: Tue, 21 Jan 2025 13:25:56 GMT
- Title: Efficient PINNs: Multi-Head Unimodular Regularization of the Solutions Space
- Authors: Pedro Tarancón-Álvarez, Pablo Tejerina-Pérez, Raul Jimenez, Pavlos Protopapas,
- Abstract summary: We present a machine learning framework to facilitate the solution of nonlinear multiscale differential equations and, especially, inverse problems using Physics-Informed Neural Networks (PINNs)
This framework is based on what is called multihead (MH) training, which involves training the network to learn a general space of all solutions for a given set of equations with certain variability, rather than learning a specific solution of the system.
We show that the multihead approach, combined with the regularization, significantly improves the efficiency of PINNs by facilitating the transfer learning process thereby enabling the finding of solutions for nonlinear, coupled, and multiscale
- Score: 1.4061979259370274
- License:
- Abstract: We present a machine learning framework to facilitate the solution of nonlinear multiscale differential equations and, especially, inverse problems using Physics-Informed Neural Networks (PINNs). This framework is based on what is called multihead (MH) training, which involves training the network to learn a general space of all solutions for a given set of equations with certain variability, rather than learning a specific solution of the system. This setup is used with a second novel technique that we call Unimodular Regularization (UR) of the latent space of solutions. We show that the multihead approach, combined with the regularization, significantly improves the efficiency of PINNs by facilitating the transfer learning process thereby enabling the finding of solutions for nonlinear, coupled, and multiscale differential equations.
Related papers
- MultiSTOP: Solving Functional Equations with Reinforcement Learning [56.073581097785016]
We develop MultiSTOP, a Reinforcement Learning framework for solving functional equations in physics.
This new methodology produces actual numerical solutions instead of bounds on them.
arXiv Detail & Related papers (2024-04-23T10:51:31Z) - A Block-Coordinate Approach of Multi-level Optimization with an
Application to Physics-Informed Neural Networks [0.0]
We propose a multi-level algorithm for the solution of nonlinear optimization problems and analyze its evaluation complexity.
We apply it to the solution of partial differential equations using physics-informed neural networks (PINNs) and show on a few test problems that the approach results in better solutions and significant computational savings.
arXiv Detail & Related papers (2023-05-23T19:12:02Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
We propose to expand the solution interval gradually to make the PINN converge to the correct solution.
All ensemble members converge to the same solution in the vicinity of observed data.
We show experimentally that the proposed method can improve the accuracy of the found solution.
arXiv Detail & Related papers (2022-04-11T14:05:34Z) - One-Shot Transfer Learning of Physics-Informed Neural Networks [2.6084034060847894]
We present a framework for transfer learning PINNs that results in one-shot inference for linear systems of both ordinary and partial differential equations.
This means that highly accurate solutions to many unknown differential equations can be obtained instantaneously without retraining an entire network.
arXiv Detail & Related papers (2021-10-21T17:14:58Z) - Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable
domain decomposition approach for solving differential equations [20.277873724720987]
We propose a new, scalable approach for solving large problems relating to differential equations called Finite Basis PINNs (FBPINNs)
FBPINNs are inspired by classical finite element methods, where the solution of the differential equation is expressed as the sum of a finite set of basis functions with compact support.
In FBPINNs neural networks are used to learn these basis functions, which are defined over small, overlapping subdomain problems.
arXiv Detail & Related papers (2021-07-16T13:03:47Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
We propose a refinement strategy to the well-known Physics-Informed Neural Networks (PINNs) for solving partial differential equations (PDEs) based on the concept of Optimal Transport (OT)
PINNs solvers have been found to suffer from a host of issues: spectral bias in fully-connected pathologies, unstable gradient, and difficulties with convergence and accuracy.
We present a novel training strategy for solving the Fokker-Planck-Kolmogorov Equation (FPKE) using OT-based sampling to supplement the existing PINNs framework.
arXiv Detail & Related papers (2021-05-26T02:51:20Z) - Learning optimal multigrid smoothers via neural networks [1.9336815376402723]
We propose an efficient framework for learning optimized smoothers from operator stencils in the form of convolutional neural networks (CNNs)
CNNs are trained on small-scale problems from a given type of PDEs based on a supervised loss function derived from multigrid convergence theories.
Numerical results on anisotropic rotated Laplacian problems demonstrate improved convergence rates and solution time compared with classical hand-crafted relaxation methods.
arXiv Detail & Related papers (2021-02-24T05:02:54Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
We present a modified Cross-Entropy Method (CEM) that uses a masked auto-regressive neural network for modeling uniform distributions over the solution space.
Our algorithm is able to express complicated solution spaces, thus allowing it to track a variety of different solution regions.
arXiv Detail & Related papers (2020-02-17T20:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.