論文の概要: Quantum-enhanced neural networks for quantum many-body simulations
- arxiv url: http://arxiv.org/abs/2501.12130v1
- Date: Tue, 21 Jan 2025 13:44:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:21:47.072495
- Title: Quantum-enhanced neural networks for quantum many-body simulations
- Title(参考訳): 量子多体シミュレーションのための量子強化ニューラルネットワーク
- Authors: Zongkang Zhang, Ying Li, Xiaosi Xu,
- Abstract要約: 本稿では、パラメータ化量子回路とニューラルネットワークを組み合わせて量子多体波動関数をモデル化する量子ニューラルハイブリッドフレームワークを提案する。
数値シミュレーションでは、スピン系と量子化学問題におけるハイブリッドアンサッツのスケーラビリティと精度が示されている。
- 参考スコア(独自算出の注目度): 3.8145527526052576
- License:
- Abstract: Neural quantum states (NQS) have gained prominence in variational quantum Monte Carlo methods in approximating ground-state wavefunctions. Despite their success, they face limitations in optimization, scalability, and expressivity in addressing certain problems. In this work, we propose a quantum-neural hybrid framework that combines parameterized quantum circuits with neural networks to model quantum many-body wavefunctions. This approach combines the efficient sampling and optimization capabilities of autoregressive neural networks with the enhanced expressivity provided by quantum circuits. Numerical simulations demonstrate the scalability and accuracy of the hybrid ansatz in spin systems and quantum chemistry problems. Our results reveal that the hybrid method achieves notably lower relative energy compared to standalone NQS. These findings underscore the potential of quantum-neural hybrid methods for tackling challenging problems in quantum many-body simulations.
- Abstract(参考訳): ニューラル量子状態(NQS)は、基底状態の波動関数を近似する変分量子モンテカルロ法において顕著である。
その成功にもかかわらず、特定の問題に対処する際の最適化、スケーラビリティ、表現性の制限に直面している。
本研究では、パラメータ化量子回路とニューラルネットワークを組み合わせて量子多体波動関数をモデル化する量子ニューラルハイブリッドフレームワークを提案する。
このアプローチは、自己回帰ニューラルネットワークの効率的なサンプリングと最適化機能と、量子回路によって提供される拡張された表現性を組み合わせる。
数値シミュレーションでは、スピン系と量子化学問題におけるハイブリッドアンサッツのスケーラビリティと精度が示されている。
その結果,本手法は独立系NQSに比べて相対エネルギーが著しく低いことがわかった。
これらの知見は、量子多体シミュレーションにおいて難しい問題に取り組むための量子-神経ハイブリッド法の可能性を強調している。
関連論文リスト
- Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
平衡伝播(Equilibrium propagation、EP)は、平衡に緩和する古典的なエネルギーモデルに導入され応用された手順である。
ここでは、EPとOnsagerの相互性を直接接続し、これを利用してEPの量子バージョンを導出する。
これは任意の量子系の可観測物の期待値に依存する損失関数の最適化に使うことができる。
論文 参考訳(メタデータ) (2024-06-10T17:22:09Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
各量子状態に対するゲートの作用を特徴付ける新しい量子ゲート距離を提案する。
提案手法は、経験的量子機械学習の3つの問題において、ベンチマークを著しく上回っている。
論文 参考訳(メタデータ) (2022-06-28T16:23:24Z) - Variational Quantum-Neural Hybrid Error Mitigation [6.555128824546528]
量子エラー軽減(QEM)は、量子コンピュータ上で信頼性の高い結果を得るために重要である。
量子-ニューラルハイブリッド固有解法 (VQNHE) アルゴリズムは, 本質的にはノイズ耐性であり, ユニークなQEM容量を持つことを示す。
論文 参考訳(メタデータ) (2021-12-20T08:07:58Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Efficient Quantum Simulation of Open Quantum System Dynamics on Noisy
Quantum Computers [0.0]
量子散逸ダイナミクスは、コヒーレントからインコヒーレントにまたがって効率的にシミュレートできることを示す。
この研究は、NISQ時代の量子優位性のための新しい方向性を提供する。
論文 参考訳(メタデータ) (2021-06-24T10:37:37Z) - Neural Error Mitigation of Near-Term Quantum Simulations [0.0]
ニューラルネットワークを用いて地下状態と地下状態の観測器の推定を改善する新しい方法である$textitneural error mitigation$を紹介します。
その結果, ニューラルエラーの低減により, 数値計算と実験的VQE計算が向上し, 低エネルギー誤差が得られた。
提案手法は,複雑な量子シミュレーション問題を解くために,短期量子コンピュータの到達範囲を広げる有望な戦略である。
論文 参考訳(メタデータ) (2021-05-17T18:00:57Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
量子生成逆数ネットワーク(量子GAN, EQ-GAN)のための新しいタイプのアーキテクチャを提案する。
EQ-GANはコヒーレントなエラーに対してさらなる堅牢性を示し、Google Sycamore超伝導量子プロセッサで実験的にEQ-GANの有効性を示す。
論文 参考訳(メタデータ) (2021-04-30T20:38:41Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。