Fast-RF-Shimming: Accelerate RF Shimming in 7T MRI using Deep Learning
- URL: http://arxiv.org/abs/2501.12157v1
- Date: Tue, 21 Jan 2025 14:09:58 GMT
- Title: Fast-RF-Shimming: Accelerate RF Shimming in 7T MRI using Deep Learning
- Authors: Zhengyi Lu, Hao Liang, Ming Lu, Xiao Wang, Xinqiang Yan, Yuankai Huo,
- Abstract summary: Higher fields introduce challenges such as radiofrequency transmit (RF) field inhomogeneities, which result in uneven flip angles and image intensity artifacts.
Traditional RF shimming methods, including Magnitude Least Squares (MLS) optimization, mitigate RF field inhomogeneity but are time-intensive and often require the presence of the patient.
Recent machine learning methods, such as RF Shim Prediction by Iteratively Projected Ridge Regression, offer alternative approaches but face challenges such as extensive training requirements.
This paper introduces a holistic learning-based framework called Fast RF Shimming, which achieves a 5000-fold speed
- Score: 16.39978444212565
- License:
- Abstract: Ultrahigh field (UHF) Magnetic Resonance Imaging (MRI) provides a high signal-to-noise ratio (SNR), enabling exceptional spatial resolution for clinical diagnostics and research. However, higher fields introduce challenges such as transmit radiofrequency (RF) field inhomogeneities, which result in uneven flip angles and image intensity artifacts. These artifacts degrade image quality and limit clinical adoption. Traditional RF shimming methods, including Magnitude Least Squares (MLS) optimization, mitigate RF field inhomogeneity but are time-intensive and often require the presence of the patient. Recent machine learning methods, such as RF Shim Prediction by Iteratively Projected Ridge Regression and other deep learning architectures, offer alternative approaches but face challenges such as extensive training requirements, limited complexity, and practical data constraints. This paper introduces a holistic learning-based framework called Fast RF Shimming, which achieves a 5000-fold speedup compared to MLS methods. First, random-initialized Adaptive Moment Estimation (Adam) derives reference shimming weights from multichannel RF fields. Next, a Residual Network (ResNet) maps RF fields to shimming outputs while incorporating a confidence parameter into the loss function. Finally, a Non-uniformity Field Detector (NFD) identifies extreme non-uniform outcomes. Comparative evaluations demonstrate significant improvements in both speed and predictive accuracy. The proposed pipeline also supports potential extensions, such as the integration of anatomical priors or multi-echo data, to enhance the robustness of RF field correction. This approach offers a faster and more efficient solution to RF shimming challenges in UHF MRI.
Related papers
- CardiacMamba: A Multimodal RGB-RF Fusion Framework with State Space Models for Remote Physiological Measurement [24.511384674989223]
Heart rate (HR) estimation via remote photoplethys (rPl) offers a non-invasive solution for health monitoring.
Traditional single-modality approaches (RGB or Radio Frequency (RF)) face challenges in balancing robustness and accuracy due to lighting variations, motion artifacts, and skin tone bias.
We propose CardiacMamba, a multimodal RGB-RF fusion framework that leverages the complementary strengths of both modalities.
arXiv Detail & Related papers (2025-02-19T11:00:34Z) - Few-shot NeRF by Adaptive Rendering Loss Regularization [78.50710219013301]
Novel view synthesis with sparse inputs poses great challenges to Neural Radiance Field (NeRF)
Recent works demonstrate that the frequency regularization of Positional rendering can achieve promising results for few-shot NeRF.
We propose Adaptive Rendering loss regularization for few-shot NeRF, dubbed AR-NeRF.
arXiv Detail & Related papers (2024-10-23T13:05:26Z) - Optimizing Transmit Field Inhomogeneity of Parallel RF Transmit Design in 7T MRI using Deep Learning [9.596613410358206]
Ultrahigh field (UHF) Magnetic Resonance Imaging (MRI) provides a higher signal-to-noise ratio and, thereby, higher spatial resolution.
UHF MRI introduces challenges such as transmit radiofrequency (RF) field (B1+) inhomogeneities, leading to uneven flip angles and image intensity anomalies.
This study addresses B1+ field homogeneity through a novel deep learning-based strategy.
arXiv Detail & Related papers (2024-08-21T04:10:56Z) - Spatial Annealing for Efficient Few-shot Neural Rendering [73.49548565633123]
We introduce an accurate and efficient few-shot neural rendering method named textbfSpatial textbfAnnealing regularized textbfNeRF (textbfSANeRF)
By adding merely one line of code, SANeRF delivers superior rendering quality and much faster reconstruction speed compared to current few-shot neural rendering methods.
arXiv Detail & Related papers (2024-06-12T02:48:52Z) - In-Sensor Radio Frequency Computing for Energy-Efficient Intelligent
Radar [8.041399176135178]
We propose to transform a large-scale RFNN into a compact RFNN while almost preserving its accuracy.
We construct the Robust TT-RFNN (RTT-RFNN) by incorporating a robustness solver on TT-RFNN to enhance its robustness.
Empirical evaluations conducted on MNIST and CIFAR-10 datasets show the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-12-16T06:21:42Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
Diffusion models have gained popularity for accelerated MRI reconstruction due to their high sample quality.
They can effectively serve as rich data priors while incorporating the forward model flexibly at inference time.
We introduce SURE-based MRI Reconstruction with Diffusion models (SMRD) to enhance robustness during testing.
arXiv Detail & Related papers (2023-10-03T05:05:35Z) - CuNeRF: Cube-Based Neural Radiance Field for Zero-Shot Medical Image Arbitrary-Scale Super Resolution [78.734927709231]
Medical image arbitrary-scale super-resolution (MIASSR) has recently gained widespread attention, aiming to super sample medical volumes at arbitrary scales via a single model.
We propose Cube-based Neural Radiance Field (CuNeRF), a zero-shot MIASSR framework that can yield medical images at arbitrary scales and viewpoints in a continuous domain.
arXiv Detail & Related papers (2023-03-28T18:36:19Z) - Learning Federated Visual Prompt in Null Space for MRI Reconstruction [83.71117888610547]
We propose a new algorithm, FedPR, to learn federated visual prompts in the null space of global prompt for MRI reconstruction.
FedPR significantly outperforms state-of-the-art FL algorithms with 6% of communication costs when given the limited amount of local training data.
arXiv Detail & Related papers (2023-03-28T17:46:16Z) - One-shot Generative Distribution Matching for Augmented RF-based UAV Identification [0.0]
This work addresses the challenge of identifying Unmanned Aerial Vehicles (UAV) using radiofrequency (RF) fingerprinting in limited RF environments.
The complexity and variability of RF signals, influenced by environmental interference and hardware imperfections, often render traditional RF-based identification methods ineffective.
One-shot generative methods for augmenting transformed RF signals offer a significant improvement in UAV identification.
arXiv Detail & Related papers (2023-01-20T02:35:43Z) - SiNeRF: Sinusoidal Neural Radiance Fields for Joint Pose Estimation and
Scene Reconstruction [147.9379707578091]
NeRFmm is the Neural Radiance Fields (NeRF) that deal with Joint Optimization tasks.
Despite NeRFmm producing precise scene synthesis and pose estimations, it still struggles to outperform the full-annotated baseline on challenging scenes.
We propose Sinusoidal Neural Radiance Fields (SiNeRF) that leverage sinusoidal activations for radiance mapping and a novel Mixed Region Sampling (MRS) for selecting ray batch efficiently.
arXiv Detail & Related papers (2022-10-10T10:47:51Z) - Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial
Transformers [0.0]
We introduce a novel unsupervised MRI reconstruction method based on zero-Shot Learned Adrial TransformERs (SLATER)
A zero-shot reconstruction is performed on undersampled test data, where inference is performed by optimizing network parameters.
Experiments on brain MRI datasets clearly demonstrate the superior performance of SLATER against several state-of-the-art unsupervised methods.
arXiv Detail & Related papers (2021-05-15T02:01:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.