Automatic selection of the best neural architecture for time series forecasting via multi-objective optimization and Pareto optimality conditions
- URL: http://arxiv.org/abs/2501.12215v1
- Date: Tue, 21 Jan 2025 15:33:55 GMT
- Title: Automatic selection of the best neural architecture for time series forecasting via multi-objective optimization and Pareto optimality conditions
- Authors: Qianying Cao, Shanqing Liu, Alan John Varghese, Jerome Darbon, Michael Triantafyllou, George Em Karniadakis,
- Abstract summary: Time series forecasting plays a pivotal role in a wide range of applications, including weather prediction, healthcare, structural health monitoring, predictive maintenance, energy systems, and financial markets.
While models such as LSTM, GRU, Transformers, and State-Space Models (SSMs) have become standard tools in this domain, selecting the optimal architecture remains a challenge.
We introduce a flexible automated framework for time series forecasting that integrates LSTM, GRU, multi-head Attention, and SSM blocks.
- Score: 1.4843690728082002
- License:
- Abstract: Time series forecasting plays a pivotal role in a wide range of applications, including weather prediction, healthcare, structural health monitoring, predictive maintenance, energy systems, and financial markets. While models such as LSTM, GRU, Transformers, and State-Space Models (SSMs) have become standard tools in this domain, selecting the optimal architecture remains a challenge. Performance comparisons often depend on evaluation metrics and the datasets under analysis, making the choice of a universally optimal model controversial. In this work, we introduce a flexible automated framework for time series forecasting that systematically designs and evaluates diverse network architectures by integrating LSTM, GRU, multi-head Attention, and SSM blocks. Using a multi-objective optimization approach, our framework determines the number, sequence, and combination of blocks to align with specific requirements and evaluation objectives. From the resulting Pareto-optimal architectures, the best model for a given context is selected via a user-defined preference function. We validate our framework across four distinct real-world applications. Results show that a single-layer GRU or LSTM is usually optimal when minimizing training time alone. However, when maximizing accuracy or balancing multiple objectives, the best architectures are often composite designs incorporating multiple block types in specific configurations. By employing a weighted preference function, users can resolve trade-offs between objectives, revealing novel, context-specific optimal architectures. Our findings underscore that no single neural architecture is universally optimal for time series forecasting. Instead, the best-performing model emerges as a data-driven composite architecture tailored to user-defined criteria and evaluation objectives.
Related papers
- Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
Large language models (LLMs) are increasingly embedded in everyday applications.
Ensuring their alignment with the diverse preferences of individual users has become a critical challenge.
We present a novel framework for few-shot steerable alignment.
arXiv Detail & Related papers (2024-12-18T16:14:59Z) - Vehicle Suspension Recommendation System: Multi-Fidelity Neural Network-based Mechanism Design Optimization [4.038368925548051]
Vehicle suspensions are designed to improve driving performance and ride comfort, but different types are available depending on the environment.
Traditional design process is multi-step, gradually reducing the number of design candidates while performing costly analyses to meet target performance.
Recently, AI models have been used to reduce the computational cost of FEA.
arXiv Detail & Related papers (2024-10-03T23:54:03Z) - LLM4Rerank: LLM-based Auto-Reranking Framework for Recommendations [51.76373105981212]
Reranking is a critical component in recommender systems, playing an essential role in refining the output of recommendation algorithms.
We introduce a comprehensive reranking framework, designed to seamlessly integrate various reranking criteria.
A customizable input mechanism is also integrated, enabling the tuning of the language model's focus to meet specific reranking needs.
arXiv Detail & Related papers (2024-06-18T09:29:18Z) - Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient [52.2669490431145]
PropEn is inspired by'matching', which enables implicit guidance without training a discriminator.
We show that training with a matched dataset approximates the gradient of the property of interest while remaining within the data distribution.
arXiv Detail & Related papers (2024-05-28T11:30:19Z) - Fairer and More Accurate Tabular Models Through NAS [14.147928131445852]
We propose using multi-objective Neural Architecture Search (NAS) and Hyperparameter Optimization (HPO) in the first application to the very challenging domain of tabular data.
We show that models optimized solely for accuracy with NAS often fail to inherently address fairness concerns.
We produce architectures that consistently dominate state-of-the-art bias mitigation methods either in fairness, accuracy or both.
arXiv Detail & Related papers (2023-10-18T17:56:24Z) - An Empirical Analysis of Fairness Notions under Differential Privacy [3.3748750222488657]
We show how different fairness notions, belonging to distinct classes of statistical fairness criteria, are impacted when one selects a model architecture suitable for DP-SGD.
These findings challenge the understanding that differential privacy will necessarily exacerbate unfairness in deep learning models trained on biased datasets.
arXiv Detail & Related papers (2023-02-06T16:29:50Z) - Optimal Event Monitoring through Internet Mashup over Multivariate Time
Series [77.34726150561087]
This framework supports the services of model definitions, querying, parameter learning, model evaluations, data monitoring, decision recommendations, and web portals.
We further extend the MTSA data model and query language to support this class of problems for the services of learning, monitoring, and recommendation.
arXiv Detail & Related papers (2022-10-18T16:56:17Z) - Designing MacPherson Suspension Architectures using Bayesian
Optimization [21.295015276123962]
Testing for compliance is performed first by computer simulation using a discipline model.
Designs passing this simulation are then considered for physical prototyping.
We show that the proposed approach is general, scalable, and efficient.
arXiv Detail & Related papers (2022-06-17T21:50:25Z) - Slimmable Domain Adaptation [112.19652651687402]
We introduce a simple framework, Slimmable Domain Adaptation, to improve cross-domain generalization with a weight-sharing model bank.
Our framework surpasses other competing approaches by a very large margin on multiple benchmarks.
arXiv Detail & Related papers (2022-06-14T06:28:04Z) - Triple-level Model Inferred Collaborative Network Architecture for Video
Deraining [43.06607185181434]
We develop a model-guided triple-level optimization framework to deduce network architecture with cooperating optimization and auto-searching mechanism.
Our model shows significant improvements in fidelity and temporal consistency over the state-of-the-art works.
arXiv Detail & Related papers (2021-11-08T13:09:00Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.