論文の概要: InternLM-XComposer2.5-Reward: A Simple Yet Effective Multi-Modal Reward Model
- arxiv url: http://arxiv.org/abs/2501.12368v1
- Date: Tue, 21 Jan 2025 18:47:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:25:33.658731
- Title: InternLM-XComposer2.5-Reward: A Simple Yet Effective Multi-Modal Reward Model
- Title(参考訳): InternLM-XComposer2.5-Reward: シンプルで効果的なマルチモーダルリワードモデル
- Authors: Yuhang Zang, Xiaoyi Dong, Pan Zhang, Yuhang Cao, Ziyu Liu, Shengyuan Ding, Shenxi Wu, Yubo Ma, Haodong Duan, Wenwei Zhang, Kai Chen, Dahua Lin, Jiaqi Wang,
- Abstract要約: IXC-2.5-Rewardは、大規模視覚言語モデルと人間の好みを一致させる、単純で効果的なマルチモーダル報酬モデルである。
IXC-2.5-Rewardは、最新のマルチモーダル報酬モデルベンチマークにおいて優れた結果を得るとともに、テキストのみの報酬モデルベンチマーク上での競合性能を示す。
- 参考スコア(独自算出の注目度): 80.93387166769679
- License:
- Abstract: Despite the promising performance of Large Vision Language Models (LVLMs) in visual understanding, they occasionally generate incorrect outputs. While reward models (RMs) with reinforcement learning or test-time scaling offer the potential for improving generation quality, a critical gap remains: publicly available multi-modal RMs for LVLMs are scarce, and the implementation details of proprietary models are often unclear. We bridge this gap with InternLM-XComposer2.5-Reward (IXC-2.5-Reward), a simple yet effective multi-modal reward model that aligns LVLMs with human preferences. To ensure the robustness and versatility of IXC-2.5-Reward, we set up a high-quality multi-modal preference corpus spanning text, image, and video inputs across diverse domains, such as instruction following, general understanding, text-rich documents, mathematical reasoning, and video understanding. IXC-2.5-Reward achieves excellent results on the latest multi-modal reward model benchmark and shows competitive performance on text-only reward model benchmarks. We further demonstrate three key applications of IXC-2.5-Reward: (1) Providing a supervisory signal for RL training. We integrate IXC-2.5-Reward with Proximal Policy Optimization (PPO) yields IXC-2.5-Chat, which shows consistent improvements in instruction following and multi-modal open-ended dialogue; (2) Selecting the best response from candidate responses for test-time scaling; and (3) Filtering outlier or noisy samples from existing image and video instruction tuning training data. To ensure reproducibility and facilitate further research, we have open-sourced all model weights and training recipes at https://github.com/InternLM/InternLM-XComposer
- Abstract(参考訳): 視覚的理解においてLVLM(Large Vision Language Models)が有望な性能を示したにもかかわらず、しばしば誤った出力を生成する。
強化学習やテストタイムスケーリングを備えた報酬モデル(RM)は、生成品質を向上させる可能性を秘めているが、LVLM向けに公開されているマルチモーダルRMは不足しており、プロプライエタリモデルの実装詳細はよく分かっていない。
InternLM-XComposer2.5-Reward(IXC-2.5-Reward)によりこのギャップを埋める。
IXC-2.5-Rewardの堅牢性と汎用性を確保するため,テキスト,画像,ビデオ入力を多分野にまたがる高品質なマルチモーダル選好コーパスを構築した。
IXC-2.5-Rewardは、最新のマルチモーダル報酬モデルベンチマークにおいて優れた結果を得るとともに、テキストのみの報酬モデルベンチマーク上での競合性能を示す。
さらに, IXC-2.5-Rewardの3つの重要な応用について述べる。
IXC-2.5-Reward with Proximal Policy Optimization (PPO) yields IXC-2.5-Chat which showed consistent improvements in instruction following and multi-modal open-ended dialogue; (2) Selecting the best response from candidate response for test-time scaling; and (3) Filtering outlier or noisy sample from existing image and video instruction Training training data。
再現性を確保し、さらなる研究を促進するため、私たちはhttps://github.com/InternLM/InternLM-XComposerですべてのモデルウェイトとトレーニングレシピをオープンソース化しました。
関連論文リスト
- MIO: A Foundation Model on Multimodal Tokens [74.85153216521945]
マルチモーダルトークン上に構築された新しい基礎モデルMIOを紹介する。
MIOは、エンドツーエンドの自己回帰的な方法で、音声、テキスト、画像、ビデオを理解し、生成することができる。
論文 参考訳(メタデータ) (2024-09-26T09:57:16Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
NVLM 1.0は、フロンティアクラスのマルチモーダル言語モデル(LLM)のファミリーであり、視覚言語タスクの最先端結果を実現する。
トレーニング効率とマルチモーダル推論能力を両立させる新しいアーキテクチャを提案する。
我々は、NVLM-1.0モデルのための生産級マルチモーダリティを開発し、視覚言語タスクに優れる。
論文 参考訳(メタデータ) (2024-09-17T17:59:06Z) - VIMI: Grounding Video Generation through Multi-modal Instruction [89.90065445082442]
既存のテキスト間拡散モデルは、事前訓練のためにテキストのみのエンコーダにのみ依存する。
検索手法を用いて大規模マルチモーダル・プロンプト・データセットを構築し,テキスト・プロンプトとテキスト・プロンプトのペア化を行う。
マルチモーダル命令を組み込んだ3つのビデオ生成タスクにおいて,第1ステージからモデルを微調整する。
論文 参考訳(メタデータ) (2024-07-08T18:12:49Z) - Video-MME: The First-Ever Comprehensive Evaluation Benchmark of Multi-modal LLMs in Video Analysis [118.08008540513596]
Video-MMEは、ビデオ解析におけるMLLMの完全なマルチモード評価ベンチマークである。
我々は,GPT-4シリーズやGemini 1.5 Pro,オープンソース画像モデルなど,最先端のMLLMを幅広く評価した。
我々の実験によると、Gemini 1.5 Proは最も優れた商用モデルであり、オープンソースモデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2024-05-31T17:59:47Z) - Tuning Large Multimodal Models for Videos using Reinforcement Learning from AI Feedback [38.708690624594794]
ビデオとテキストのマルチモーダルアライメントは、主にマルチモーダル命令・チューンデータのボリュームと品質が不足しているため、依然として困難である。
本稿では,AIフィードバックからの強化学習(Reinforcement Learning from AI Feedback, RLAIF)と呼ばれる,マルチモーダルAIシステムを用いた新たなアライメント戦略を提案する。
具体的には、嗜好フィードバックの生成中に、詳細な映像記述を文脈として提供することによって、文脈対応報酬モデルを提案する。
論文 参考訳(メタデータ) (2024-02-06T06:27:40Z) - Retrieving-to-Answer: Zero-Shot Video Question Answering with Frozen
Large Language Models [69.59125732317972]
本稿では,ビデオQAのためのシンプルで効果的な検索・回答(R2A)フレームワークを提案する。
R2Aは、まず、事前訓練されたマルチモーダルモデルを用いて、ジェネリックテキストコーパスから意味論的に類似したテキストの集合を検索する。
質問と検索されたテキストの両方で、LSMを直接使用して、望ましい回答を得ることができる。
論文 参考訳(メタデータ) (2023-06-15T20:56:20Z) - Leveraging Uni-Modal Self-Supervised Learning for Multimodal
Audio-Visual Speech Recognition [23.239078852797817]
マルチモーダル音声視覚音声認識(AVSR)の推進に一様自己教師型学習を活用する。
特に、私たちはまず大規模なユニモーダルデータセットでオーディオとビジュアルエンコーダをトレーニングし、その後、両方のエンコーダのコンポーネントをより大きなマルチモーダルフレームワークに統合します。
本モデルは,単語レベルと文レベルの両方のAVSRタスクに対して実験的に検証される。
論文 参考訳(メタデータ) (2022-02-24T15:12:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。