論文の概要: Fuel Efficiency Analysis of the Public Transportation System Based on the Gaussian Mixture Model Clustering
- arxiv url: http://arxiv.org/abs/2501.12429v1
- Date: Tue, 21 Jan 2025 14:25:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:53:25.100634
- Title: Fuel Efficiency Analysis of the Public Transportation System Based on the Gaussian Mixture Model Clustering
- Title(参考訳): ガウス混合モデルクラスタリングに基づく公共交通システムの燃料効率解析
- Authors: Zhipeng Ma, Bo Nørregaard Jørgensen, Zheng Ma,
- Abstract要約: 公共交通機関は温室効果ガスの主要な供給源である。
本稿では, ガウス混合モデルを用いて, 単独燃料効率データセットをクラスタリングする。
運転行動と経路条件が燃料効率に与える影響について, 可視化解析を用いた予備的検討を行った。
- 参考スコア(独自算出の注目度): 2.46052899880511
- License:
- Abstract: Public transportation is a major source of greenhouse gas emissions, highlighting the need to improve bus fuel efficiency. Clustering algorithms assist in analyzing fuel efficiency by grouping data into clusters, but irrelevant features may complicate the analysis and choosing the optimal number of clusters remains a challenging task. Therefore, this paper employs the Gaussian mixture models to cluster the solo fuel-efficiency dataset. Moreover, an integration method that combines the Silhouette index, Calinski-Harabasz index, and Davies-Bouldin index is developed to select the optimal cluster numbers. A dataset with 4006 bus trips in North Jutland, Denmark is utilized as the case study. Trips are first split into three groups, then one group is divided further, resulting in four categories: extreme, normal, low, and extremely low fuel efficiency. A preliminary study using visualization analysis is conducted to investigate how driving behaviors and route conditions affect fuel efficiency. The results indicate that both individual driving habits and route characteristics have a significant influence on fuel efficiency.
- Abstract(参考訳): 公共交通機関は温室効果ガスの主要な供給源であり、バスの燃料効率を改善する必要性を強調している。
クラスタリングアルゴリズムは、データをクラスタにグループ化することで、燃料効率の分析を支援するが、無関係な機能は分析を複雑にし、最適なクラスタ数を選択することは難しい課題である。
そこで本稿では, ガウス混合モデルを用いて, 単独燃料効率データセットをクラスタリングする。
さらに、最適なクラスタ数を選択するために、シルエット指数、カリンスキー・ハラバス指数、デイヴィス・ボルディン指数を組み合わせた積分法を開発した。
デンマークの北ユトランドで4006回のバス旅行のデータセットがケーススタディとして利用されている。
トリップはまず3つのグループに分けられ、その後さらに1つのグループに分けられ、極端、正常、低、極端に低い燃料効率の4つのカテゴリに分けられる。
運転行動と経路条件が燃料効率に与える影響について, 可視化解析を用いた予備的検討を行った。
その結果,個々の運転習慣と経路特性が燃料効率に有意な影響を及ぼすことが示唆された。
関連論文リスト
- Evaluating the effects of Data Sparsity on the Link-level Bicycling Volume Estimation: A Graph Convolutional Neural Network Approach [54.84957282120537]
本稿では,リンクレベルの自転車のボリュームをモデル化するために,グラフ畳み込みネットワークアーキテクチャを利用する最初の研究について述べる。
オーストラリア,メルボルン市全体での年間平均自転車数(AADB)を,Strava Metro の自転車数データを用いて推定した。
以上の結果から,GCNモデルは従来のAADB数予測モデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-10-11T04:53:18Z) - Green vehicle routing problem that jointly optimizes delivery speed and routing based on the characteristics of electric vehicles [0.0]
本稿では,実車を用いたエネルギー消費モデルを構築した。
エネルギー消費モデルはまた、車両のスタート/ストップ、速度、距離、および負荷がエネルギー消費に与える影響も含んでいる。
改良された適応遺伝的アルゴリズムは、最もエネルギー効率のよい経路を解くために用いられる。
論文 参考訳(メタデータ) (2024-10-04T08:08:15Z) - Optimizing Diffusion Models for Joint Trajectory Prediction and Controllable Generation [49.49868273653921]
拡散モデルは、自律運転における共同軌道予測と制御可能な生成を約束する。
最適ガウス拡散(OGD)と推定クリーンマニフォールド(ECM)誘導を導入する。
提案手法は生成過程の合理化を図り,計算オーバーヘッドを低減した実用的な応用を実現する。
論文 参考訳(メタデータ) (2024-08-01T17:59:59Z) - Analysis and mining of low-carbon and energy-saving tourism data
characteristics based on machine learning algorithm [0.0]
本稿では,機械学習アルゴリズムに基づく低炭素省エネルギー旅行データの特徴分析とマイニングを提案する。
筆者らはK平均クラスタリングアルゴリズムを用いて住民の低炭素移動意欲の強さを分類する。
論文 参考訳(メタデータ) (2023-12-04T14:32:54Z) - Scaling Laws for Sparsely-Connected Foundation Models [70.41266138010657]
大規模データセット上でトレーニングしたトランスフォーマーのスケーリング挙動に及ぼすパラメータ空間の影響について検討する。
重み空間,非ゼロパラメータ数,およびトレーニングデータの量との関係を記述した最初のスケーリング法則を同定する。
論文 参考訳(メタデータ) (2023-09-15T16:29:27Z) - Research on Efficient Fuzzy Clustering Method Based on Local Fuzzy
Granular balls [67.33923111887933]
本稿では,データをグラニュラーボールを用いてファジィにイテレーションし,その位置にある2つのグラニュラーボールのみをデータのメンバーシップ度として検討する。
ファジィグラニュラーボールセットは、異なるデータシナリオに直面して、より多くの処理方法を使用することができる。
論文 参考訳(メタデータ) (2023-03-07T01:52:55Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
本稿では,分散学習政策の環境フットプリントに影響を与える要因を概説し,分析する。
バニラとコンセンサスによって駆動される分散FLポリシーの両方をモデル化する。
その結果、flは低ビット/ジュール効率を特徴とするワイヤレスシステムにおいて、顕著なエンドツーエンドの省エネ(30%-40%)が可能となった。
論文 参考訳(メタデータ) (2021-03-18T16:04:42Z) - A Hybrid Multi-Objective Carpool Route Optimization Technique using
Genetic Algorithm and A* Algorithm [0.0]
本研究では,カープール問題に対する最適経路を求めるためのGA-A*ハイブリッドアルゴリズムを提案する。
得られた経路は、ピックアップ/ドロップコストだけでなく、旅行・出先距離を最小化し、サービス提供者の利益を最大化する。
提案アルゴリズムはコルカタのソルトレイク地域に実装されている。
論文 参考訳(メタデータ) (2020-07-11T14:13:20Z) - Real-Time Monitoring and Driver Feedback to Promote Fuel Efficient
Driving [0.7087237546722617]
本稿では, リアルタイム自動監視とドライバフィードバックにより, 燃費効率の高い運転行動を促進する新しい枠組みを提案する。
歴史的データを用いたランダムフォレスト型分類モデルを用いて, 燃料非効率運転行動の同定を行う。
不効率な運転動作が検出されると、ファジィ論理推論システムを使用して、燃料効率の運転動作を維持するために運転者がすべきことを判断する。
論文 参考訳(メタデータ) (2020-07-03T09:23:53Z) - Data-Driven Prediction of Route-Level Energy Use for Mixed-Vehicle
Transit Fleets [7.2775693810940565]
公共交通機関は電気自動車(EV)による燃費削減を目指している
EVの先行コストが高いため、ほとんどの機関は内燃機関と電気自動車の混成車しか手に入らない。
混合車両輸送車両における経路レベルのエネルギー利用に関するデータ駆動予測のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2020-04-10T16:31:10Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
本稿では,2値データのクラスタリング手法について検討し,まず,クラスタのコンパクトさを計測するアグリゲーション基準を定義した。
近隣地域と人口動態最適化メタヒューリスティックスを用いた5つの新しいオリジナル手法が導入された。
準モンテカルロ実験によって生成された16のデータテーブルから、L1の相似性と階層的クラスタリング、k-means(メドイドやPAM)の1つのアグリゲーションの比較を行う。
論文 参考訳(メタデータ) (2020-01-06T23:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。