論文の概要: Federated Discrete Denoising Diffusion Model for Molecular Generation with OpenFL
- arxiv url: http://arxiv.org/abs/2501.12523v1
- Date: Tue, 21 Jan 2025 22:26:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:30:03.949171
- Title: Federated Discrete Denoising Diffusion Model for Molecular Generation with OpenFL
- Title(参考訳): OpenFLを用いた分子生成のための離散離散化拡散モデル
- Authors: Kevin Ta, Patrick Foley, Mattson Thieme, Abhishek Pandey, Prashant Shah,
- Abstract要約: ここでは,OpenFL を用いて学習した離散離散化拡散モデルについて述べる。
このモデルは、生成した分子の特異性と妥当性を評価する際に、集中的なデータに基づいて訓練されたモデルと同等のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 3.200310902662411
- License:
- Abstract: Generating unique molecules with biochemically desired properties to serve as viable drug candidates is a difficult task that requires specialized domain expertise. In recent years, diffusion models have shown promising results in accelerating the drug design process through AI-driven molecular generation. However, training these models requires massive amounts of data, which are often isolated in proprietary silos. OpenFL is a federated learning framework that enables privacy-preserving collaborative training across these decentralized data sites. In this work, we present a federated discrete denoising diffusion model that was trained using OpenFL. The federated model achieves comparable performance with a model trained on centralized data when evaluating the uniqueness and validity of the generated molecules. This demonstrates the utility of federated learning in the drug design process. OpenFL is available at: https://github.com/securefederatedai/openfl
- Abstract(参考訳): 生化学的に望ましい性質を持つユニークな分子を生薬候補として生成することは、専門分野の専門知識を必要とする難しい課題である。
近年、拡散モデルは、AI駆動分子生成による薬物設計プロセスの加速に有望な結果を示している。
しかし、これらのモデルのトレーニングには大量のデータが必要であり、しばしばプロプライエタリなサイロで隔離される。
OpenFLは、これらの分散データサイト間のプライバシー保護協調トレーニングを可能にする、連合学習フレームワークである。
そこで本研究では,OpenFLを用いて学習した離散偏微分拡散モデルについて述べる。
フェデレートされたモデルは、生成した分子の特異性と妥当性を評価する際に、集中的なデータに基づいて訓練されたモデルと同等のパフォーマンスを達成する。
これは、薬物設計プロセスにおける連合学習の有用性を示すものである。
OpenFL は https://github.com/securefederatedai/openfl で利用可能である。
関連論文リスト
- Bridging the Gap between Learning and Inference for Diffusion-Based Molecule Generation [18.936142688346816]
GapDiffは、トレーニングと推論の間のデータ分散の相違を緩和するトレーニングフレームワークである。
我々は,CrossDocked 2020データセット上で3次元分子生成モデルを用いて実験を行った。
論文 参考訳(メタデータ) (2024-11-08T10:53:39Z) - Spectral Co-Distillation for Personalized Federated Learning [69.97016362754319]
本稿では,モデルスペクトル情報に基づく新しい蒸留法を提案する。
また、汎用モデルトレーニングとパーソナライズモデルトレーニングの双方向ブリッジを確立するための共蒸留フレームワークも導入する。
提案したスペクトル共蒸留法の有効性と性能を実証し,また,待ち時間のないトレーニングプロトコルについて述べる。
論文 参考訳(メタデータ) (2024-01-29T16:01:38Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
パーソナライズドラーニング(PFL)のための新しいGAN(Generative Adversarial Network)の共有と集約戦略を提案する。
PFL-GANは、異なるシナリオにおけるクライアントの不均一性に対処する。より具体的には、まずクライアント間の類似性を学び、次に重み付けされた協調データアグリゲーションを開発する。
いくつかのよく知られたデータセットに対する厳密な実験による実験結果は、PFL-GANの有効性を示している。
論文 参考訳(メタデータ) (2023-08-23T22:38:35Z) - ConDistFL: Conditional Distillation for Federated Learning from
Partially Annotated Data [5.210280120905009]
コンディストFL(ConDistFL)は、フェデレートラーニング(FL)と知識蒸留を組み合わせた枠組みである。
我々は,MSDとKITS19の課題から4つの異なる部分的腹部CTデータセットの枠組みを検証した。
本研究は,コンディストFLが頻繁なアグリゲーションを伴わずに良好に機能し,FLの通信コストを低減できることを示唆する。
論文 参考訳(メタデータ) (2023-08-08T06:07:49Z) - Phoenix: A Federated Generative Diffusion Model [6.09170287691728]
大規模な集中型データセットで生成モデルをトレーニングすることで、データのプライバシやセキュリティ、アクセシビリティといった面での課題が発生する可能性がある。
本稿では,フェデレートラーニング(FL)技術を用いて,複数のデータソースにまたがる拡散確率モデル(DDPM)の学習手法を提案する。
論文 参考訳(メタデータ) (2023-06-07T01:43:09Z) - Collaborative Training of Medical Artificial Intelligence Models with
non-uniform Labels [0.07176066267895696]
強力で堅牢なディープラーニングモデルを構築するには、大規模なマルチパーティデータセットによるトレーニングが必要だ。
このようなデータに対する協調学習のためのフレキシブル・フェデレーション・ラーニング(FFL)を提案する。
不均質なラベル付きデータセットを持つことで、FFLベースのトレーニングがパフォーマンスを著しく向上させることを示す。
論文 参考訳(メタデータ) (2022-11-24T13:48:54Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - Achieving Personalized Federated Learning with Sparse Local Models [75.76854544460981]
フェデレートラーニング(FL)は異種分散データに対して脆弱である。
この問題に対処するため、個人ごとに専用のローカルモデルを作成するためにパーソナライズされたFL(PFL)が提案された。
既存のPFLソリューションは、異なるモデルアーキテクチャに対する不満足な一般化を示すか、あるいは膨大な余分な計算とメモリを犠牲にするかのどちらかである。
我々は、パーソナライズされたスパースマスクを用いて、エッジ上のスパースローカルモデルをカスタマイズする新しいPFLスキームFedSpaを提案する。
論文 参考訳(メタデータ) (2022-01-27T08:43:11Z) - PFL-MoE: Personalized Federated Learning Based on Mixture of Experts [1.8757823231879849]
フェデレーションラーニング(FL)は、データプライバシーを保護するために、トレーニングノード間のデータ共有を避けます。
PFL-MoEは一般的なアプローチであり、既存のPFLアルゴリズムを統合することでインスタンス化することができる。
本稿では,Fashion-MNISTデータセット上でLeNet-5およびVGG-16モデルをトレーニングし,PFL-MoEの有効性を示す。
論文 参考訳(メタデータ) (2020-12-31T12:51:14Z) - Ensemble Distillation for Robust Model Fusion in Federated Learning [72.61259487233214]
Federated Learning(FL)は、多くのデバイスが機械学習モデルを協調的にトレーニングする機械学習環境である。
現在のトレーニングスキームのほとんどでは、サーバモデルのパラメータと更新されたパラメータをクライアント側から平均化することで、中央モデルを洗練します。
本研究では,モデル融合のためのアンサンブル蒸留法を提案する。
論文 参考訳(メタデータ) (2020-06-12T14:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。