論文の概要: ConDistFL: Conditional Distillation for Federated Learning from
Partially Annotated Data
- arxiv url: http://arxiv.org/abs/2308.04070v1
- Date: Tue, 8 Aug 2023 06:07:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-09 13:54:30.860924
- Title: ConDistFL: Conditional Distillation for Federated Learning from
Partially Annotated Data
- Title(参考訳): ConDistFL:部分注釈データからのフェデレーション学習のための条件付き蒸留
- Authors: Pochuan Wang, Chen Shen, Weichung Wang, Masahiro Oda, Chiou-Shann Fuh,
Kensaku Mori, Holger R. Roth
- Abstract要約: コンディストFL(ConDistFL)は、フェデレートラーニング(FL)と知識蒸留を組み合わせた枠組みである。
我々は,MSDとKITS19の課題から4つの異なる部分的腹部CTデータセットの枠組みを検証した。
本研究は,コンディストFLが頻繁なアグリゲーションを伴わずに良好に機能し,FLの通信コストを低減できることを示唆する。
- 参考スコア(独自算出の注目度): 5.210280120905009
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing a generalized segmentation model capable of simultaneously
delineating multiple organs and diseases is highly desirable. Federated
learning (FL) is a key technology enabling the collaborative development of a
model without exchanging training data. However, the limited access to fully
annotated training data poses a major challenge to training generalizable
models. We propose "ConDistFL", a framework to solve this problem by combining
FL with knowledge distillation. Local models can extract the knowledge of
unlabeled organs and tumors from partially annotated data from the global model
with an adequately designed conditional probability representation. We validate
our framework on four distinct partially annotated abdominal CT datasets from
the MSD and KiTS19 challenges. The experimental results show that the proposed
framework significantly outperforms FedAvg and FedOpt baselines. Moreover, the
performance on an external test dataset demonstrates superior generalizability
compared to models trained on each dataset separately. Our ablation study
suggests that ConDistFL can perform well without frequent aggregation, reducing
the communication cost of FL. Our implementation will be available at
https://github.com/NVIDIA/NVFlare/tree/dev/research/condist-fl.
- Abstract(参考訳): 複数の臓器と疾患を同時に記述できる一般化セグメンテーションモデルの開発が望まれる。
フェデレートラーニング(FL)は、トレーニングデータを交換することなく、モデルの協調開発を可能にする重要な技術である。
しかし、完全に注釈付けされたトレーニングデータへの限られたアクセスは、一般化可能なモデルをトレーニングする上で大きな課題となる。
本稿では,FLと知識蒸留を組み合わせた「ConDistFL」を提案する。
局所モデルは、適切に設計された条件付き確率表現を用いて、グローバルモデルから部分的に注釈付きデータからラベルのない臓器や腫瘍の知識を抽出することができる。
我々は,MSDとKITS19の課題から4つの異なる部分的腹部CTデータセットを検証した。
実験の結果,提案フレームワークはfedavgおよびfedoptベースラインを大きく上回っている。
さらに、外部テストデータセットのパフォーマンスは、各データセットで個別にトレーニングされたモデルと比較して、優れた一般化性を示す。
本研究は,コンディストFLが頻繁な凝集を伴わずに良好に機能し,FLの通信コストを低減できることを示す。
実装はhttps://github.com/nvidia/nvflare/tree/dev/research/condist-flで利用可能です。
関連論文リスト
- Exploiting Label Skews in Federated Learning with Model Concatenation [39.38427550571378]
Federated Learning(FL)は、生データを交換することなく、さまざまなデータオーナでディープラーニングを実行するための、有望なソリューションとして登場した。
非IID型では、ラベルスキューは困難であり、画像分類やその他のタスクで一般的である。
我々は,これらの局所モデルをグローバルモデルの基礎として分解する,シンプルで効果的なアプローチであるFedConcatを提案する。
論文 参考訳(メタデータ) (2023-12-11T10:44:52Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Federated Learning on Heterogeneous and Long-Tailed Data via Classifier
Re-Training with Federated Features [24.679535905451758]
Federated Learning (FL)は、分散機械学習タスクのためのプライバシ保護ソリューションを提供する。
FLモデルの性能を著しく損なう難題の1つは、データ不均一性と長い尾分布の共起である。
We propose a novel privacy-serving FL method for heterogeneous and long-tailed data via Federated Re-training with Federated Features (CreFF)。
論文 参考訳(メタデータ) (2022-04-28T10:35:11Z) - Federated Learning from Only Unlabeled Data with
Class-Conditional-Sharing Clients [98.22390453672499]
Supervised Federated Learning (FL)は、複数のクライアントがラベル付きデータを共有せずにトレーニングされたモデルを共有することを可能にする。
本研究では,教師なし学習(FedUL)のフェデレーションを提案し,各クライアントのラベル付きデータにラベル付きデータを変換する。
論文 参考訳(メタデータ) (2022-04-07T09:12:00Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - Distillation-Based Semi-Supervised Federated Learning for
Communication-Efficient Collaborative Training with Non-IID Private Data [8.935169114460663]
本研究では,主にインクリメンタルなコミュニケーションコストを克服するフェデレートラーニング(FL)フレームワークを開発する。
モバイル端末間でローカルモデルの出力を交換する蒸留に基づく半教師付きFLアルゴリズムを提案する。
DS-FLでは、通信コストはモデルの出力次元にのみ依存し、モデルサイズに応じてスケールアップしない。
論文 参考訳(メタデータ) (2020-08-14T03:47:27Z) - Ensemble Distillation for Robust Model Fusion in Federated Learning [72.61259487233214]
Federated Learning(FL)は、多くのデバイスが機械学習モデルを協調的にトレーニングする機械学習環境である。
現在のトレーニングスキームのほとんどでは、サーバモデルのパラメータと更新されたパラメータをクライアント側から平均化することで、中央モデルを洗練します。
本研究では,モデル融合のためのアンサンブル蒸留法を提案する。
論文 参考訳(メタデータ) (2020-06-12T14:49:47Z) - Federated learning with hierarchical clustering of local updates to
improve training on non-IID data [3.3517146652431378]
一つのジョイントモデルを学ぶことは、特定の種類の非IDデータが存在する場合に最適ではないことがよく示される。
階層的クラスタリングステップ(FL+HC)を導入することでFLに修正を加える。
FL+HCは,クラスタリングを伴わないFLに比べて,より少ない通信ラウンドでモデルトレーニングを収束させることができることを示す。
論文 参考訳(メタデータ) (2020-04-24T15:16:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。