論文の概要: Ultralow-dimensionality reduction for identifying critical transitions by spatial-temporal PCA
- arxiv url: http://arxiv.org/abs/2501.12582v1
- Date: Wed, 22 Jan 2025 02:09:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:53:35.272585
- Title: Ultralow-dimensionality reduction for identifying critical transitions by spatial-temporal PCA
- Title(参考訳): 時空間PCAによる臨界遷移の同定のための超低次元化
- Authors: Pei Chen, Yaofang Suo, Rui Liu, Luonan Chen,
- Abstract要約: stPCAは、歪みのない単一の潜伏変数によって、高次元の時系列のダイナミクスを表現する。
この単一変数のダイナミクスは解析的に解決され、理論上は元の時系列の時間的特性を保っている。
実世界のデータセットへの応用は、stPCAの有効性を示した。
- 参考スコア(独自算出の注目度): 8.474631244771928
- License:
- Abstract: Discovering dominant patterns and exploring dynamic behaviors especially critical state transitions and tipping points in high-dimensional time-series data are challenging tasks in study of real-world complex systems, which demand interpretable data representations to facilitate comprehension of both spatial and temporal information within the original data space. Here, we proposed a general and analytical ultralow-dimensionality reduction method for dynamical systems named spatial-temporal principal component analysis (stPCA) to fully represent the dynamics of a high-dimensional time-series by only a single latent variable without distortion, which transforms high-dimensional spatial information into one-dimensional temporal information based on nonlinear delay-embedding theory. The dynamics of this single variable is analytically solved and theoretically preserves the temporal property of original high-dimensional time-series, thereby accurately and reliably identifying the tipping point before an upcoming critical transition. Its applications to real-world datasets such as individual-specific heterogeneous ICU records demonstrated the effectiveness of stPCA, which quantitatively and robustly provides the early-warning signals of the critical/tipping state on each patient.
- Abstract(参考訳): 高次元時系列データにおける支配的なパターンの発見、特に臨界状態遷移と転換点の探索は、原データ空間内の空間的情報と時間的情報の理解を容易にするために解釈可能なデータ表現を必要とする実世界の複雑なシステムの研究において難しい課題である。
本稿では,高次元空間情報を非線形遅延埋め込み理論に基づく1次元時間情報に変換するため,歪みのない1つの潜時変数のみで高次元時系列のダイナミクスを完全に表現するために,時空間主成分分析 (stPCA) と呼ばれる動的システムの汎用的かつ解析的超低次元化手法を提案する。
この単一変数のダイナミクスを解析的に解き、理論上は元の高次元の時系列の時間的特性を保ち、これにより、今後の臨界遷移の前のピーク点を正確かつ確実に同定する。
個人固有の異種ICUレコードなどの実世界のデータセットへの応用は、stPCAの有効性を実証した。
関連論文リスト
- Surgformer: Surgical Transformer with Hierarchical Temporal Attention for Surgical Phase Recognition [7.682613953680041]
本稿では,空間時間モデルと冗長性の問題に終末的に対処する手術用トランスフォーマー(サージフォーマー)を提案する。
提案するサージフォーマーは,最先端の手法に対して良好に機能することを示す。
論文 参考訳(メタデータ) (2024-08-07T16:16:31Z) - Dynamical Regimes of Diffusion Models [14.797301819675454]
空間の次元とデータ数が大きい体制における生成拡散モデルについて検討する。
本研究は, 逆向き発生拡散過程における3つの異なる動的状態を明らかにするものである。
崩壊時間の次元とデータ数への依存性は、拡散モデルにおける次元の呪いの徹底的な評価を与える。
論文 参考訳(メタデータ) (2024-02-28T17:19:26Z) - Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective [63.60312929416228]
textbftextitAttraosはカオス理論を長期時系列予測に取り入れている。
本研究では,AttraosがPatchTSTと比較して,パラメータの12分の1しか持たない主流データセットやカオスデータセットにおいて,LTSF法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-02-18T05:35:01Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Intrinsic dimension estimation for discrete metrics [65.5438227932088]
本稿では,離散空間に埋め込まれたデータセットの内在次元(ID)を推定するアルゴリズムを提案する。
我々は,その精度をベンチマークデータセットで示すとともに,種鑑定のためのメダゲノミクスデータセットの分析に応用する。
このことは、列の空間の高次元性にもかかわらず、蒸発圧が低次元多様体に作用することを示唆している。
論文 参考訳(メタデータ) (2022-07-20T06:38:36Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Spatiotemporal convolutional network for time-series prediction and
causal inference [21.895413699349966]
時系列のマルチステップ予測を効率的に正確にレンダリングするために、ニューラルネットワークコンピューティングフレームワークi.N.N.を開発した。
このフレームワークは、人工知能(AI)や機械学習分野の実践的応用において大きな可能性を秘めている。
論文 参考訳(メタデータ) (2021-07-03T06:20:43Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Stochastic embeddings of dynamical phenomena through variational
autoencoders [1.7205106391379026]
位相空間の再構成において,観測空間の次元性を高めるために認識ネットワークを用いる。
我々の検証は、このアプローチが元の状態空間に類似した状態空間を復元するだけでなく、新しい時系列を合成できることを示している。
論文 参考訳(メタデータ) (2020-10-13T10:10:24Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Deep Markov Spatio-Temporal Factorization [16.125473644303852]
Deep Markov-temporal factorization (DMSTF) はデータの動的解析のための生成モデルである。
DMSTFは、空間因子またはそれらの機能形式を生成的にパラメータ化するために、低次元空間潜時を学習する。
時系列クラスタリングや制御信号における因子分析を行うために拡張可能な生成因子分析モデルの柔軟なファミリーでの結果が得られた。
論文 参考訳(メタデータ) (2020-03-22T01:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。