論文の概要: Current Opinions on Memristor-Accelerated Machine Learning Hardware
- arxiv url: http://arxiv.org/abs/2501.12644v1
- Date: Wed, 22 Jan 2025 05:10:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:27:54.365693
- Title: Current Opinions on Memristor-Accelerated Machine Learning Hardware
- Title(参考訳): Memristor-Accelerated Machine Learningハードウェアの現状と課題
- Authors: Mingrui Jiang, Yichun Xu, Zefan Li, Can Li,
- Abstract要約: 本論文は,メムリスタをベースとした機械学習アクセラレータの現状を概観する。
本論では, デバイス変動, 周辺回路の効率性, 設計と最適化の体系化など, この分野に残る重要な課題について論じる。
Memristorベースのアクセラレーターは、特に電力効率が最重要であるエッジアプリケーションにおいて、AIハードウェアの能力を著しく向上させることができる。
- 参考スコア(独自算出の注目度): 6.670055193544993
- License:
- Abstract: The unprecedented advancement of artificial intelligence has placed immense demands on computing hardware, but traditional silicon-based semiconductor technologies are approaching their physical and economic limit, prompting the exploration of novel computing paradigms. Memristor offers a promising solution, enabling in-memory analog computation and massive parallelism, which leads to low latency and power consumption. This manuscript reviews the current status of memristor-based machine learning accelerators, highlighting the milestones achieved in developing prototype chips, that not only accelerate neural networks inference but also tackle other machine learning tasks. More importantly, it discusses our opinion on current key challenges that remain in this field, such as device variation, the need for efficient peripheral circuitry, and systematic co-design and optimization. We also share our perspective on potential future directions, some of which address existing challenges while others explore untouched territories. By addressing these challenges through interdisciplinary efforts spanning device engineering, circuit design, and systems architecture, memristor-based accelerators could significantly advance the capabilities of AI hardware, particularly for edge applications where power efficiency is paramount.
- Abstract(参考訳): 人工知能の先例のない進歩は、ハードウェアに多大な需要を与えてきたが、従来のシリコンベースの半導体技術は、その物理的および経済的限界に近づいており、新しいコンピューティングパラダイムの探求を促している。
Memristorは、インメモリアナログ計算と大規模な並列処理を可能にする有望なソリューションを提供する。
この原稿は、memristorベースの機械学習アクセラレータの現状をレビューし、ニューラルネットワークの推論を加速するだけでなく、他の機械学習タスクにも取り組みながら、プロトタイプチップの開発において達成されたマイルストーンを強調している。
さらに重要なことは、デバイスの変化、効率的な周辺回路の必要性、体系的な共設計と最適化など、この分野に残る重要な課題について、我々の意見について議論することである。
我々はまた、将来的な方向性についての見解を共有しており、そのうちのいくつかは既存の課題に対処する一方で、他は触れられていない領域を探索する。
デバイスエンジニアリング、回路設計、システムアーキテクチャにまたがる学際的な取り組みを通じてこれらの課題に対処することで、メムリスタベースのアクセラレーターはAIハードウェア、特に電力効率が最重要となるエッジアプリケーションの性能を大幅に向上させることができる。
関連論文リスト
- Reducing the Barriers to Entry for Foundation Model Training [0.28756346738878485]
最近、世界は機械学習と人工知能のアプリケーションに対する需要が前例のない加速を目撃した。
この需要の急増は、サプライチェーンの基盤技術スタックに多大な負担を課している。
技術エコシステム全体にわたるAIトレーニング基盤の根本的な変更を提案する。
論文 参考訳(メタデータ) (2024-04-12T20:58:25Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - A perspective on physical reservoir computing with nanomagnetic devices [1.9007022664972197]
我々は、スピントロニクスデバイスを用いた計算に適した単純なトレーニングアルゴリズムを備えたリカレントネットワークである貯水池コンピューティングパラダイムに焦点を当てた。
我々はニューロモルフィック・スピントロニクスデバイスを開発するための技術や手法をレビューし、そのようなデバイスが広く使われるようになる前に対処すべき重要なオープン・イシューを結論付ける。
論文 参考訳(メタデータ) (2022-12-09T13:43:21Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
記事は、インテリジェンスが機械学習技術の進歩の鍵を握っていると主張している。
私たちは、インテリジェンスを具体化するための課題と機会を強調します。
本稿では,ロボット学習の最先端性を著しく向上させる研究の方向性を提案する。
論文 参考訳(メタデータ) (2021-10-28T16:04:01Z) - Resistive Neural Hardware Accelerators [0.46198289193451136]
ReRAMベースのインメモリコンピューティングは、領域と電力効率のよい推論の実装において大きな可能性を秘めている。
ReRAMベースのインメモリコンピューティングへの移行は、領域と電力効率のよい推論の実装において大きな可能性を秘めている。
本稿では,最先端のReRAMベースディープニューラルネットワーク(DNN)多コアアクセラレータについて概説する。
論文 参考訳(メタデータ) (2021-09-08T21:11:48Z) - Photonics for artificial intelligence and neuromorphic computing [52.77024349608834]
フォトニック集積回路は超高速な人工ニューラルネットワークを可能にした。
フォトニックニューロモルフィックシステムはナノ秒以下のレイテンシを提供する。
これらのシステムは、機械学習と人工知能の需要の増加に対応する可能性がある。
論文 参考訳(メタデータ) (2020-10-30T21:41:44Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
高速で低エネルギーのコンピュータは、エッジでリアルタイム人工知能を実現するために要求されている。
ワンステップ学習は、ボストンの住宅のコスト予測と、MNIST桁認識のための2層ニューラルネットワークのトレーニングによって支援される。
結果は、クロスポイントアレイ内の物理計算、並列計算、アナログ計算のおかげで、1つの計算ステップで得られる。
論文 参考訳(メタデータ) (2020-05-05T08:00:07Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - Resource-Efficient Neural Networks for Embedded Systems [23.532396005466627]
本稿では,機械学習技術の現状について概説する。
私たちは、過去10年で主要な機械学習モデルであるディープニューラルネットワーク(DNN)に基づく、リソース効率の高い推論に焦点を当てています。
我々は、圧縮技術を用いて、よく知られたベンチマークデータセットの実験で議論を裏付ける。
論文 参考訳(メタデータ) (2020-01-07T14:17:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。