Sequential Change Point Detection via Denoising Score Matching
- URL: http://arxiv.org/abs/2501.12667v1
- Date: Wed, 22 Jan 2025 06:04:57 GMT
- Title: Sequential Change Point Detection via Denoising Score Matching
- Authors: Wenbin Zhou, Liyan Xie, Zhigang Peng, Shixiang Zhu,
- Abstract summary: This paper proposes a score-based CUSUM change-point detection, in which the score functions of the data distribution are estimated by injecting noise.
We validate the practical efficacy of our method through numerical experiments on two synthetic datasets and a real-world earthquake precursor detection task.
- Score: 8.22915954499148
- License:
- Abstract: Sequential change-point detection plays a critical role in numerous real-world applications, where timely identification of distributional shifts can greatly mitigate adverse outcomes. Classical methods commonly rely on parametric density assumptions of pre- and post-change distributions, limiting their effectiveness for high-dimensional, complex data streams. This paper proposes a score-based CUSUM change-point detection, in which the score functions of the data distribution are estimated by injecting noise and applying denoising score matching. We consider both offline and online versions of score estimation. Through theoretical analysis, we demonstrate that denoising score matching can enhance detection power by effectively controlling the injected noise scale. Finally, we validate the practical efficacy of our method through numerical experiments on two synthetic datasets and a real-world earthquake precursor detection task, demonstrating its effectiveness in challenging scenarios.
Related papers
- Dimension-free Score Matching and Time Bootstrapping for Diffusion Models [11.743167854433306]
Diffusion models generate samples by estimating the score function of the target distribution at various noise levels.
In this work, we establish the first (nearly) dimension-free sample bounds complexity for learning these score functions.
A key aspect of our analysis is the use of a single function approximator to jointly estimate scores across noise levels.
arXiv Detail & Related papers (2025-02-14T18:32:22Z) - Large Language Model Enhanced Hard Sample Identification for Denoising Recommendation [4.297249011611168]
Implicit feedback is often used to build recommender systems.
Previous studies have attempted to alleviate this by identifying noisy samples based on their diverged patterns.
We propose a Large Language Model Enhanced Hard Sample Denoising framework.
arXiv Detail & Related papers (2024-09-16T14:57:09Z) - Reproduction of scan B-statistic for kernel change-point detection algorithm [10.49860279555873]
Change-point detection has garnered significant attention due to its broad range of applications.
In this paper, we reproduce a recently proposed online change-point detection algorithm based on an efficient kernel-based scan B-statistic.
Our numerical experiments demonstrate that the scan B-statistic consistently delivers superior performance.
arXiv Detail & Related papers (2024-08-23T15:12:31Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
Adversarial attacks dramatically change the output of an otherwise accurate learning system using a seemingly inconsequential modification to a piece of input data.
Here, we show that this may be seen as a fundamental feature of classifiers working with high dimensional input data.
We introduce a simple generic and generalisable framework for which key behaviours observed in practical systems arise with high probability.
arXiv Detail & Related papers (2023-09-07T12:02:00Z) - TracInAD: Measuring Influence for Anomaly Detection [0.0]
This paper proposes a novel methodology to flag anomalies based on TracIn.
We test our approach using Variational Autoencoders and show that the average influence of a subsample of training points on a test point can serve as a proxy for abnormality.
arXiv Detail & Related papers (2022-05-03T08:20:15Z) - Investigation of Different Calibration Methods for Deep Speaker
Embedding based Verification Systems [66.61691401921296]
This paper presents an investigation over several methods of score calibration for deep speaker embedding extractors.
An additional focus of this research is to estimate the impact of score normalization on the calibration performance of the system.
arXiv Detail & Related papers (2022-03-28T21:22:22Z) - Partial Identification with Noisy Covariates: A Robust Optimization
Approach [94.10051154390237]
Causal inference from observational datasets often relies on measuring and adjusting for covariates.
We show that this robust optimization approach can extend a wide range of causal adjustment methods to perform partial identification.
Across synthetic and real datasets, we find that this approach provides ATE bounds with a higher coverage probability than existing methods.
arXiv Detail & Related papers (2022-02-22T04:24:26Z) - Learning Noise Transition Matrix from Only Noisy Labels via Total
Variation Regularization [88.91872713134342]
We propose a theoretically grounded method that can estimate the noise transition matrix and learn a classifier simultaneously.
We show the effectiveness of the proposed method through experiments on benchmark and real-world datasets.
arXiv Detail & Related papers (2021-02-04T05:09:18Z) - Partially Observable Online Change Detection via Smooth-Sparse
Decomposition [16.8028358824706]
We consider online change detection of high dimensional data streams with sparse changes, where only a subset of data streams can be observed at each sensing time point due to limited sensing capacities.
On the one hand, the detection scheme should be able to deal with partially observable data and meanwhile have efficient detection power for sparse changes.
In this paper, we propose a novel detection scheme called CDSSD. In particular, it describes the structure of high dimensional data with sparse changes by smooth-sparse decomposition.
arXiv Detail & Related papers (2020-09-22T16:03:04Z) - Unsupervised Domain Adaptation for Acoustic Scene Classification Using
Band-Wise Statistics Matching [69.24460241328521]
Machine learning algorithms can be negatively affected by mismatches between training (source) and test (target) data distributions.
We propose an unsupervised domain adaptation method that consists of aligning the first- and second-order sample statistics of each frequency band of target-domain acoustic scenes to the ones of the source-domain training dataset.
We show that the proposed method outperforms the state-of-the-art unsupervised methods found in the literature in terms of both source- and target-domain classification accuracy.
arXiv Detail & Related papers (2020-04-30T23:56:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.