Large Language Model Enhanced Hard Sample Identification for Denoising Recommendation
- URL: http://arxiv.org/abs/2409.10343v1
- Date: Mon, 16 Sep 2024 14:57:09 GMT
- Title: Large Language Model Enhanced Hard Sample Identification for Denoising Recommendation
- Authors: Tianrui Song, Wenshuo Chao, Hao Liu,
- Abstract summary: Implicit feedback is often used to build recommender systems.
Previous studies have attempted to alleviate this by identifying noisy samples based on their diverged patterns.
We propose a Large Language Model Enhanced Hard Sample Denoising framework.
- Score: 4.297249011611168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit feedback, often used to build recommender systems, unavoidably confronts noise due to factors such as misclicks and position bias. Previous studies have attempted to alleviate this by identifying noisy samples based on their diverged patterns, such as higher loss values, and mitigating the noise through sample dropping or reweighting. Despite the progress, we observe existing approaches struggle to distinguish hard samples and noise samples, as they often exhibit similar patterns, thereby limiting their effectiveness in denoising recommendations. To address this challenge, we propose a Large Language Model Enhanced Hard Sample Denoising (LLMHD) framework. Specifically, we construct an LLM-based scorer to evaluate the semantic consistency of items with the user preference, which is quantified based on summarized historical user interactions. The resulting scores are used to assess the hardness of samples for the pointwise or pairwise training objectives. To ensure efficiency, we introduce a variance-based sample pruning strategy to filter potential hard samples before scoring. Besides, we propose an iterative preference update module designed to continuously refine summarized user preference, which may be biased due to false-positive user-item interactions. Extensive experiments on three real-world datasets and four backbone recommenders demonstrate the effectiveness of our approach.
Related papers
- Double Correction Framework for Denoising Recommendation [45.98207284259792]
In implicit feedback, noisy samples can affect precise user preference learning.
A popular solution is based on dropping noisy samples in the model training phase.
We propose a Double Correction Framework for Denoising Recommendation.
arXiv Detail & Related papers (2024-05-18T12:15:10Z) - ROPO: Robust Preference Optimization for Large Language Models [59.10763211091664]
We propose an iterative alignment approach that integrates noise-tolerance and filtering of noisy samples without the aid of external models.
Experiments on three widely-used datasets with Mistral-7B and Llama-2-7B demonstrate that ROPO significantly outperforms existing preference alignment methods.
arXiv Detail & Related papers (2024-04-05T13:58:51Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - PASS: Peer-Agreement based Sample Selection for training with Noisy Labels [16.283722126438125]
The prevalence of noisy-label samples poses a significant challenge in deep learning, inducing overfitting effects.
Current methodologies often rely on the small-loss hypothesis or feature-based selection to separate noisy- and clean-label samples.
We propose a new noisy-label detection method, termed Peer-Agreement based Sample Selection (PASS), to address this problem.
arXiv Detail & Related papers (2023-03-20T00:35:33Z) - Denoising after Entropy-based Debiasing A Robust Training Method for
Dataset Bias with Noisy Labels [12.335698325757491]
We propose an approach called denoising after entropy-based debiasing, i.e., DENEB, which has three main stages.
We find that running denoising algorithms before debiasing is ineffective because denoising algorithms reduce the impact of difficult-to-learn samples.
arXiv Detail & Related papers (2022-12-01T04:34:59Z) - Self-Filtering: A Noise-Aware Sample Selection for Label Noise with
Confidence Penalization [39.90342091782778]
We propose a novel selection strategy, textbfSelf-textbfFiltextbftering (SFT), that utilizes the fluctuation of noisy examples in historical predictions to filter them.
Specifically, we introduce a memory bank module that stores the historical predictions of each example and dynamically updates to support the selection for the subsequent learning iteration.
By increasing the weight of the misclassified categories with this term, the loss function is robust to label noise in mild conditions.
arXiv Detail & Related papers (2022-08-24T08:02:36Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
Learning with noisy labels (LNL) aims at designing strategies to improve model performance and generalization by mitigating the effects of model overfitting to noisy labels.
Recent advances employ the predicted label distributions of individual samples to perform noise verification and noisy label correction, easily giving rise to confirmation bias.
We propose Neighborhood Collective Estimation, in which the predictive reliability of a candidate sample is re-estimated by contrasting it against its feature-space nearest neighbors.
arXiv Detail & Related papers (2022-08-05T14:47:22Z) - Probabilistic and Variational Recommendation Denoising [56.879165033014026]
Learning from implicit feedback is one of the most common cases in the application of recommender systems.
We propose probabilistic and variational recommendation denoising for implicit feedback.
We employ the proposed DPI and DVAE on four state-of-the-art recommendation models and conduct experiments on three datasets.
arXiv Detail & Related papers (2021-05-20T08:59:44Z) - Jo-SRC: A Contrastive Approach for Combating Noisy Labels [58.867237220886885]
We propose a noise-robust approach named Jo-SRC (Joint Sample Selection and Model Regularization based on Consistency)
Specifically, we train the network in a contrastive learning manner. Predictions from two different views of each sample are used to estimate its "likelihood" of being clean or out-of-distribution.
arXiv Detail & Related papers (2021-03-24T07:26:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.