Enhancing Privacy in Federated Learning through Quantum Teleportation Integration
- URL: http://arxiv.org/abs/2412.20762v1
- Date: Mon, 30 Dec 2024 07:15:21 GMT
- Title: Enhancing Privacy in Federated Learning through Quantum Teleportation Integration
- Authors: Koffka Khan,
- Abstract summary: Federated learning enables model training across multiple clients without sharing raw data, thereby enhancing privacy.
Quantum teleportation ensures that data remains secure during transmission, as any eavesdropping attempt would be detectable.
We propose a novel architecture where quantum teleportation facilitates the secure exchange of model parameters and gradients among clients and servers.
- Score: 0.7614628596146599
- License:
- Abstract: Federated learning enables collaborative model training across multiple clients without sharing raw data, thereby enhancing privacy. However, the exchange of model updates can still expose sensitive information. Quantum teleportation, a process that transfers quantum states between distant locations without physical transmission of the particles themselves, has recently been implemented in real-world networks. This position paper explores the potential of integrating quantum teleportation into federated learning frameworks to bolster privacy. By leveraging quantum entanglement and the no-cloning theorem, quantum teleportation ensures that data remains secure during transmission, as any eavesdropping attempt would be detectable. We propose a novel architecture where quantum teleportation facilitates the secure exchange of model parameters and gradients among clients and servers. This integration aims to mitigate risks associated with data leakage and adversarial attacks inherent in classical federated learning setups. We also discuss the practical challenges of implementing such a system, including the current limitations of quantum network infrastructure and the need for hybrid quantum-classical protocols. Our analysis suggests that, despite these challenges, the convergence of quantum communication technologies and federated learning presents a promising avenue for achieving unprecedented levels of privacy in distributed machine learning.
Related papers
- Practical quantum federated learning and its experimental demonstration [16.652124459831946]
We propose a practical quantum federated learning framework on quantum networks.
We experimentally validate our framework on a 4-client quantum network with a scalable structure.
Our work provides critical insights for building scalable, efficient, and quantum-secure machine learning systems.
arXiv Detail & Related papers (2025-01-22T08:28:11Z) - Quantum Information Processing, Sensing and Communications: Their Myths, Realities and Futures [61.25494706587422]
The state-of-the-art, knowledge gaps and future evolution of quantum machine learning are discussed.
We conclude with a set of promising future research ideas in the field of ultimately secure quantum communications.
arXiv Detail & Related papers (2024-12-01T22:28:02Z) - Quantum delegated and federated learning via quantum homomorphic encryption [0.5939164722752263]
We present a general framework that enables quantum delegated and federated learning with atheoretical data privacy guarantee.
We show that learning and inference under this framework feature substantially lower communication complexity compared with schemes based on blind quantum computing.
arXiv Detail & Related papers (2024-09-28T14:13:50Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Privacy-preserving quantum federated learning via gradient hiding [5.543544712471747]
This paper presents innovative quantum protocols with quantum communication designed to address the privacy problem.
In contrast to previous works that leverage expressive variational quantum circuits or differential privacy techniques, we consider gradient information concealment using quantum states.
We propose two distinct FL protocols, one based on private inner-product estimation and the other on incremental learning.
arXiv Detail & Related papers (2023-12-07T17:16:30Z) - Quantum Federated Learning With Quantum Networks [7.842152902652214]
We present a quantum-classical transfer learning scheme for classical data and communication with a hub-spoke topology.
While quantum communication is secure from eavesdrop attacks and no measurements from quantum to classical translation, due to no cloning theorem, hub-spoke topology is not ideal for quantum communication without quantum memory.
We also demonstrate the first successful use of quantum weights for quantum federated learning, which allows us to perform our training entirely in quantum.
arXiv Detail & Related papers (2023-10-23T16:45:29Z) - Quantum Federated Learning for Distributed Quantum Networks [9.766446130011706]
We propose a quantum federated learning for distributed quantum networks by utilizing interesting characteristics of quantum mechanics.
A quantum gradient descent algorithm is provided to help clients in the distributed quantum networks to train local models.
A quantum secure multi-party computation protocol is designed, which utilizes the Chinese residual theorem.
arXiv Detail & Related papers (2022-12-25T14:37:23Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.