Bright single-photon source in a silicon chip by nanoscale positioning of a color center in a microcavity
- URL: http://arxiv.org/abs/2501.12744v1
- Date: Wed, 22 Jan 2025 09:25:29 GMT
- Title: Bright single-photon source in a silicon chip by nanoscale positioning of a color center in a microcavity
- Authors: Baptiste Lefaucher, Yoann Baron, Jean-Baptiste Jager, Vincent Calvo, Christian Elsässer, Giuliano Coppola, Frédéric Mazen, Sébastien Kerdilès, Félix Cache, Anaïs Dréau, Jean-Michel Gérard,
- Abstract summary: We present an all-silicon source of near-infrared linearly-polarized single photons fabricated by nanoscale positioning of a color center in a silicon-on-insulator microcavity.
Results represent a major step towards on-demand sources of indistinguishable near-infrared single photons within silicon photonics chips.
- Score: 0.0
- License:
- Abstract: We present an all-silicon source of near-infrared linearly-polarized single photons, fabricated by nanoscale positioning of a color center in a silicon-on-insulator microcavity. The color center consists of a single W center, created at a well-defined position by Si$^{+}$ ion implantation through a 150 nm-diameter nanohole in a mask. A circular Bragg grating cavity resonant with the W's zero-phonon line at 1217 nm is fabricated at the same location as the nanohole. Under above-gap continuous-wave excitation, a very clean photon antibunching behavior ($g{^2} \leq 0.06$) is observed over the entire power range, which highlights the absence of parasitic emitters. Purcell-enhancement of W's zero-phonon emission provides both a record-high photoluminescence count rate among Si color centers (ca $1.2 \times 10^{6}$ counts/s) and apparent Debye-Waller factor around 99%. We also demonstrate the triggered emission of single photons with 93% purity under weak pulsed laser excitation. At high pulsed laser power, we reveal a detrimental effect of repumping processes, that could be mitigated using selective pumping schemes in the future. These results represent a major step towards on-demand sources of indistinguishable near-infrared single photons within silicon photonics chips.
Related papers
- A New Bite Into Dark Matter with the SNSPD-Based QROCODILE Experiment [55.46105000075592]
We present the first results from the Quantum Resolution-d Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE)
The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption.
We report new world-leading constraints on the interactions of sub-MeV dark matter particles with masses as low as 30 keV.
arXiv Detail & Related papers (2024-12-20T19:00:00Z) - Bright and Purcell-enhanced single photon emission from a silicon G center [0.2413409939867421]
We show bright Purcell-enhanced emission from a silicon G center by coupling it to a nanophotonic cavity.
We obtain a spontaneous emission rate of 0.97 ns, which is the fastest single photon emission rate reported in silicon.
arXiv Detail & Related papers (2024-12-13T23:10:44Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Cavity-assisted resonance fluorescence from a nitrogen-vacancy center in
diamond [0.0]
The nitrogen-vacancy center in diamond is an attractive resource for the generation of remote entangled states.
Here, we couple a nitrogen-vacancy center with a narrow extrinsically broadened linewidth, hosted in a micron-thin membrane, to the mode of an open optical microcavity.
The resulting Purcell factor of $sim$1.8 increases the fraction of zero-phonon line photons to above 44%, leading to coherent photon emission rates exceeding four times the state of the art.
arXiv Detail & Related papers (2024-03-07T15:57:57Z) - Cavity enhanced emission from a silicon T center [0.23917125666169287]
T centers exhibit long excited state lifetimes and a low Debye-Waller factor, making them dim emitters with low efficiency into the zero-phonon line.
Nanophotonic cavities can solve this problem by enhancing radiative emission into the zero-phonon line through the Purcell effect.
arXiv Detail & Related papers (2023-10-20T20:45:54Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Quantum interference of resonance fluorescence from Germanium-vacancy
color centers in diamond [0.5442803601216896]
We observed resonance fluorescence from GeV color centers in diamond at cryogenic temperature.
Together with single-shot readout of spin states, it paves the way towards building a quantum network with GeV color centers in diamond.
arXiv Detail & Related papers (2022-02-16T07:34:57Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z) - Purcell enhancement of a single silicon carbide color center with
coherent spin control [0.0]
We present the Purcell enhancement of a single neutral divacancy coupled to a photonic crystal cavity.
We demonstrate coherent control of the divacancy ground state spin inside the cavity nanostructure.
This spin-cavity system represents an advance towards scalable long-distance entanglement protocols.
arXiv Detail & Related papers (2020-02-28T19:54:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.