論文の概要: Unveiling Zero-Space Detection: A Novel Framework for Autonomous Ransomware Identification in High-Velocity Environments
- arxiv url: http://arxiv.org/abs/2501.12811v1
- Date: Wed, 22 Jan 2025 11:41:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:30:25.058669
- Title: Unveiling Zero-Space Detection: A Novel Framework for Autonomous Ransomware Identification in High-Velocity Environments
- Title(参考訳): ゼロ空間検出の展開:高速度環境における自律型ランサムウェア識別のための新しいフレームワーク
- Authors: Lafedi Svet, Arthur Brightwell, Augustus Wildflower, Cecily Marshwood,
- Abstract要約: 提案したZero-Space Detectionフレームワークは、教師なしクラスタリングと高度なディープラーニング技術により、潜時行動パターンを識別する。
高速度環境では多相フィルタリングとアンサンブル学習を統合して効率的な意思決定を行う。
実験的評価では、LockBit、Conti、Revil、BlackMatterなど、さまざまなランサムウェアファミリー間で高い検出率を示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Modern cybersecurity landscapes increasingly demand sophisticated detection frameworks capable of identifying evolving threats with precision and adaptability. The proposed Zero-Space Detection framework introduces a novel approach that dynamically identifies latent behavioral patterns through unsupervised clustering and advanced deep learning techniques. Designed to address the limitations of signature-based and heuristic methods, it operates effectively in high-velocity environments by integrating multi-phase filtering and ensemble learning for refined decision-making. Experimental evaluation reveals high detection rates across diverse ransomware families, including LockBit, Conti, REvil, and BlackMatter, while maintaining low false positive rates and scalable performance. Computational overhead remains minimal, with average processing times ensuring compatibility with real-time systems even under peak operational loads. The framework demonstrates resilience against adversarial strategies such as obfuscation and encryption speed variability, which frequently challenge conventional detection systems. Analysis across multiple data sources highlights its versatility in handling diverse file types and operational contexts. Comprehensive metrics, including detection probability, latency, and resource efficiency, validate its efficacy under real-world conditions. Through its modular architecture, the framework achieves seamless integration with existing cybersecurity infrastructures without significant reconfiguration. The results demonstrate its robustness and scalability, offering a transformative paradigm for ransomware identification in dynamic and resource-constrained environments.
- Abstract(参考訳): 現代のサイバーセキュリティの展望は、精度と適応性で進化する脅威を識別できる高度な検出フレームワークをますます要求している。
提案したZero-Space Detectionフレームワークは、教師なしクラスタリングと高度なディープラーニング技術により、潜在行動パターンを動的に識別する新しいアプローチを導入している。
シグネチャベースおよびヒューリスティックな手法の限界に対処するために設計され、多相フィルタリングとアンサンブル学習を統合して高速度環境で効果的に機能する。
実験的評価では、LockBit、Conti、Revil、BlackMatterなど、さまざまなランサムウェアファミリー間で高い検出率を示し、偽陽性率とスケーラブルなパフォーマンスを維持している。
計算オーバーヘッドは最小限であり、平均処理時間は、ピーク時の運用負荷でもリアルタイムシステムとの互換性を確保する。
このフレームワークは、難読化や暗号化速度のばらつきといった敵の戦略に対するレジリエンスを示し、従来の検出システムにしばしば挑戦する。
複数のデータソースをまたいだ分析では、ファイルタイプや運用状況の多様さが強調されている。
検出確率、レイテンシ、リソース効率を含む総合的なメトリクスは、実環境下での有効性を検証する。
モジュラーアーキテクチャを通じて、このフレームワークは、大幅な再構成なしに既存のサイバーセキュリティインフラストラクチャとのシームレスな統合を実現する。
その結果,その堅牢性とスケーラビリティを実証し,動的および資源制約のある環境におけるランサムウェア識別のための変換パラダイムを提供する。
関連論文リスト
- Hierarchical Polysemantic Feature Embedding for Autonomous Ransomware Detection [0.0]
ランサムウェアの進化には、より洗練された検出技術の開発が必要である。
提案するフレームワークでは,ランサムウェア関連機能を非ユークリッド空間に埋め込んでいる。
実験により、このフレームワークは従来の機械学習ベースのモデルよりも一貫して優れていた。
提案手法は,検出性能と処理オーバーヘッドのバランスを保ち,現実のサイバーセキュリティアプリケーションの候補となる。
論文 参考訳(メタデータ) (2025-02-09T21:46:36Z) - Algorithmic Segmentation and Behavioral Profiling for Ransomware Detection Using Temporal-Correlation Graphs [0.0]
テンポラル相関グラフを利用して、悪意ある操作に固有の複雑な関係と時間パターンをモデル化する新しいフレームワークが導入された。
実験では、さまざまなランサムウェアファミリーにまたがるフレームワークの有効性を、常に高い精度、リコール、全体的な検出精度で実証した。
この研究は、動的グラフ分析と機械学習を統合して、脅威検出における将来のイノベーションを実現することによって、サイバーセキュリティ技術の進歩に貢献している。
論文 参考訳(メタデータ) (2025-01-29T06:09:25Z) - Intelligent Code Embedding Framework for High-Precision Ransomware Detection via Multimodal Execution Path Analysis [0.0]
マルチモーダル実行経路解析によりランサムウェアの活動を特定する新しいフレームワークを開発した。
高次元の埋め込みと動的導出機構を統合し、多様な攻撃変異体にわたる行動パターンをキャプチャする。
論文 参考訳(メタデータ) (2025-01-27T07:51:51Z) - Hierarchical Pattern Decryption Methodology for Ransomware Detection Using Probabilistic Cryptographic Footprints [0.0]
このフレームワークは、高度なクラスタリングアルゴリズムと機械学習を組み合わせて、ランサムウェアによる異常を分離する。
偽陽性率を低く保ちながら、悪意のある暗号化操作と良心的な活動とを効果的に区別する。
リアルタイム異常評価の導入により、ランサムウェア検出における致命的なレイテンシ問題に対処し、迅速な応答能力が保証される。
論文 参考訳(メタデータ) (2025-01-25T05:26:17Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
本稿では,統計的特徴選択と分類技術を統合し,欠陥検出精度を向上させるハイブリッドフレームワークを提案する。
工業画像から抽出した55個の特徴を統計的手法を用いて解析した。
これらの手法をフレキシブルな機械学習アプリケーションに統合することにより、検出精度を改善し、偽陽性や誤分類を減らす。
論文 参考訳(メタデータ) (2024-12-11T22:12:21Z) - Optimizing Multispectral Object Detection: A Bag of Tricks and Comprehensive Benchmarks [49.84182981950623]
RGBおよびTIR(熱赤外)変調を利用したマルチスペクトル物体検出は,課題として広く認識されている。
モダリティと堅牢な融合戦略の両方から特徴を効果的に抽出するだけでなく、スペクトルの相違といった問題に対処する能力も必要である。
本稿では,高パフォーマンス単一モードモデルのシームレスな最適化が可能な,効率的かつ容易にデプロイ可能なマルチスペクトルオブジェクト検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-27T12:18:39Z) - Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
ディープニューラルネットワーク(DNN)は多くのシナリオで異常な結果を示した強力なツールです。
しかし、それらの複雑な設計と透明性の欠如は、現実世界のアプリケーションに適用する際の安全性上の懸念を提起する。
DNNの形式的検証(FV)は、安全面の証明可能な保証を提供する貴重なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-12-10T13:51:25Z) - Detecting Unknown Attacks in IoT Environments: An Open Set Classifier
for Enhanced Network Intrusion Detection [5.787704156827843]
本稿では,IoT環境に適したネットワーク侵入検知システム(NIDS)の領域におけるオープンセット認識(OSR)問題の緩和を目的としたフレームワークを提案する。
ネットワークトラフィックから空間的・時間的パターンを抽出し,パケットレベルデータのイメージベース表現に重きを置いている。
実験の結果は、このフレームワークの有効性を顕著に強調し、これまで見つからなかった攻撃に対して、驚くべき88%の検知率を誇示している。
論文 参考訳(メタデータ) (2023-09-14T06:41:45Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
我々は、動的システムの定性理論から知られているトラップ領域の概念を適用し、分散学習のための共同戦略空間に安全セットを作成する。
本稿では,既知の学習力学を持つシステムにおいて,候補がトラップ領域を形成することを検証するための二分分割アルゴリズムと,学習力学が未知のシナリオに対するサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-27T14:47:52Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。