論文の概要: LLM-based Continuous Intrusion Detection Framework for Next-Gen Networks
- arxiv url: http://arxiv.org/abs/2411.03354v2
- Date: Mon, 11 Nov 2024 18:19:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:03:01.840715
- Title: LLM-based Continuous Intrusion Detection Framework for Next-Gen Networks
- Title(参考訳): LLMによる次世代ネットワークの連続侵入検出フレームワーク
- Authors: Frederic Adjewa, Moez Esseghir, Leila Merghem-Boulahia,
- Abstract要約: このフレームワークはトランスフォーマーエンコーダアーキテクチャを採用しており、悪意のあるトラフィックと正当なトラフィックを区別するために、双方向に隠されたパターンをキャプチャする。
このシステムは、ガウス混合モデル(GMM)を高次元BERT埋め込みから派生したクラスタ特徴に活用することにより、未知の攻撃タイプを段階的に同定する。
新たな未知の攻撃クラスタの統合後も、このフレームワークは高いレベルで動作し続け、分類精度とリコールの両方で95.6%を達成している。
- 参考スコア(独自算出の注目度): 0.7100520098029439
- License:
- Abstract: In this paper, we present an adaptive framework designed for the continuous detection, identification and classification of emerging attacks in network traffic. The framework employs a transformer encoder architecture, which captures hidden patterns in a bidirectional manner to differentiate between malicious and legitimate traffic. Initially, the framework focuses on the accurate detection of malicious activities, achieving a perfect recall of 100\% in distinguishing between attack and benign traffic. Subsequently, the system incrementally identifies unknown attack types by leveraging a Gaussian Mixture Model (GMM) to cluster features derived from high-dimensional BERT embeddings. This approach allows the framework to dynamically adjust its identification capabilities as new attack clusters are discovered, maintaining high detection accuracy. Even after integrating additional unknown attack clusters, the framework continues to perform at a high level, achieving 95.6\% in both classification accuracy and recall.The results demonstrate the effectiveness of the proposed framework in adapting to evolving threats while maintaining high accuracy in both detection and identification tasks. Our ultimate goal is to develop a scalable, real-time intrusion detection system that can continuously evolve with the ever-changing network threat landscape.
- Abstract(参考訳): 本稿では,ネットワークトラフィックにおける新興攻撃の連続検出,識別,分類を目的とした適応型フレームワークを提案する。
このフレームワークはトランスフォーマーエンコーダアーキテクチャを採用しており、悪意のあるトラフィックと正当なトラフィックを区別するために、双方向に隠されたパターンをキャプチャする。
当初、このフレームワークは悪意のあるアクティビティの正確な検出に重点を置いており、攻撃と良心的なトラフィックの区別において100\%の完全なリコールを達成する。
このシステムは,Gaussian Mixture Model(GMM)を高次元BERT埋め込みから派生したクラスタ機能に活用することにより,未知の攻撃タイプを段階的に同定する。
このアプローチにより、新たな攻撃クラスタが発見されたときに、フレームワークが識別能力を動的に調整し、高い検出精度を維持することができる。
新たな未知の攻撃クラスタの統合後も、フレームワークは高いレベルで動作し続け、分類精度とリコールの両方で95.6\%を達成し、検出タスクと識別タスクの両方において高い精度を維持しながら、進化する脅威に適応する上で、提案フレームワークの有効性を実証した。
我々の最終的な目標は、絶えず変化するネットワーク脅威の状況で継続的に進化できるスケーラブルでリアルタイムな侵入検知システムを開発することです。
関連論文リスト
- Comprehensive Botnet Detection by Mitigating Adversarial Attacks, Navigating the Subtleties of Perturbation Distances and Fortifying Predictions with Conformal Layers [1.6001193161043425]
ボットネット(Botnet)は、悪意あるアクターによって制御されるコンピュータネットワークで、重要なサイバーセキュリティ上の課題を提示する。
本研究は、機械学習ベースのボットネット検出システムを弱体化させることを目的として、攻撃者が引き起こす高度な敵操作に対処する。
ISCXデータセットとISOTデータセットに基づいてトレーニングされた機械学習とディープラーニングアルゴリズムを活用するフローベース検出アプローチを導入する。
論文 参考訳(メタデータ) (2024-09-01T08:53:21Z) - Time-Aware Face Anti-Spoofing with Rotation Invariant Local Binary Patterns and Deep Learning [50.79277723970418]
模倣攻撃は 不正な識別と その後の攻撃者の認証につながる
顔認識と同様に、模倣攻撃も機械学習で検出できる。
本稿では,未使用の機能と時間認識の深層学習戦略を組み合わせることで,高い分類精度を実現する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-27T07:26:10Z) - Multi-agent Reinforcement Learning-based Network Intrusion Detection System [3.4636217357968904]
侵入検知システム(IDS)は,コンピュータネットワークのセキュリティ確保において重要な役割を担っている。
本稿では,自動,効率的,堅牢なネットワーク侵入検出が可能な,新しいマルチエージェント強化学習(RL)アーキテクチャを提案する。
我々のソリューションは、新しい攻撃の追加に対応し、既存の攻撃パターンの変更に効果的に適応するように設計されたレジリエントなアーキテクチャを導入します。
論文 参考訳(メタデータ) (2024-07-08T09:18:59Z) - Secure Hierarchical Federated Learning in Vehicular Networks Using Dynamic Client Selection and Anomaly Detection [10.177917426690701]
階層的フェデレートラーニング(HFL)は、車両ネットワークにおける敵または信頼できない車両の課題に直面している。
本研究では,動的車両選択とロバストな異常検出機構を統合した新しい枠組みを提案する。
提案アルゴリズムは,強烈な攻撃条件下においても顕著なレジリエンスを示す。
論文 参考訳(メタデータ) (2024-05-25T18:31:20Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
カテゴリーシフト(DGCS)下における領域一般化の実践的問題について検討する。
未知のクラスサンプルを同時に検出し、ターゲットドメイン内の既知のクラスサンプルを分類することを目的としている。
従来のDGと比較すると,1)ソースクラスのみを用いたトレーニングにおいて,未知の概念を学習する方法,2)ソーストレーニングされたモデルを未知の環境に適応する方法,の2つの新しい課題に直面している。
論文 参考訳(メタデータ) (2023-10-07T07:53:12Z) - Detecting Unknown Attacks in IoT Environments: An Open Set Classifier
for Enhanced Network Intrusion Detection [5.787704156827843]
本稿では,IoT環境に適したネットワーク侵入検知システム(NIDS)の領域におけるオープンセット認識(OSR)問題の緩和を目的としたフレームワークを提案する。
ネットワークトラフィックから空間的・時間的パターンを抽出し,パケットレベルデータのイメージベース表現に重きを置いている。
実験の結果は、このフレームワークの有効性を顕著に強調し、これまで見つからなかった攻撃に対して、驚くべき88%の検知率を誇示している。
論文 参考訳(メタデータ) (2023-09-14T06:41:45Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
本稿では,異なる汚職の存在下での検出の堅牢性を促進するために,二段階の対向的枠組みを提案する。
我々の手法は広範囲の汚職で21.96%のIOUを著しく改善し、特に一般ベンチマークで4.97%のIOUを推進している。
論文 参考訳(メタデータ) (2023-09-03T06:35:07Z) - Generative Adversarial Network-Driven Detection of Adversarial Tasks in
Mobile Crowdsensing [5.675436513661266]
クラウドセンシングシステムは、不特定かつユビキタスなプロパティの上に構築されるため、さまざまな攻撃に対して脆弱である。
以前の研究では、GANベースの攻撃は実験的に設計された攻撃サンプルよりも重大な破壊力を示すことが示唆されている。
本稿では,GANモデルを統合することにより,知的に設計された不正なセンシングサービス要求を検出することを目的とする。
論文 参考訳(メタデータ) (2022-02-16T00:23:25Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Scope Head for Accurate Localization in Object Detection [135.9979405835606]
本研究では,各位置のアンカーを相互依存関係としてモデル化したScopeNetと呼ばれる新しい検出器を提案する。
我々の簡潔で効果的な設計により、提案したScopeNetはCOCOの最先端の成果を達成する。
論文 参考訳(メタデータ) (2020-05-11T04:00:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。