FDG-Diff: Frequency-Domain-Guided Diffusion Framework for Compressed Hazy Image Restoration
- URL: http://arxiv.org/abs/2501.12832v1
- Date: Wed, 22 Jan 2025 12:19:47 GMT
- Title: FDG-Diff: Frequency-Domain-Guided Diffusion Framework for Compressed Hazy Image Restoration
- Authors: Ruicheng Zhang, Kanghui Tian, Zeyu Zhang, Qixiang Liu, Zhi Jin,
- Abstract summary: Existing dehazing models often neglect compression effects, which limits their effectiveness in practical applications.
We introduce FDG-Diff, a novel frequency-domain-guided dehazing framework.
Second, we introduce the High-Frequency Compensation Module (HFCM), which enhances spatial-domain detail restoration.
Third, we introduce the Degradation-Aware Denoising Timestep Predictor (DADTP), which addresses regional degradation inconsistencies in compressed hazy images.
- Score: 16.348272500121336
- License:
- Abstract: In this study, we reveal that the interaction between haze degradation and JPEG compression introduces complex joint loss effects, which significantly complicate image restoration. Existing dehazing models often neglect compression effects, which limits their effectiveness in practical applications. To address these challenges, we introduce three key contributions. First, we design FDG-Diff, a novel frequency-domain-guided dehazing framework that improves JPEG image restoration by leveraging frequency-domain information. Second, we introduce the High-Frequency Compensation Module (HFCM), which enhances spatial-domain detail restoration by incorporating frequency-domain augmentation techniques into a diffusion-based restoration framework. Lastly, the introduction of the Degradation-Aware Denoising Timestep Predictor (DADTP) module further enhances restoration quality by enabling adaptive region-specific restoration, effectively addressing regional degradation inconsistencies in compressed hazy images. Experimental results across multiple compressed dehazing datasets demonstrate that our method consistently outperforms the latest state-of-the-art approaches. Code be available at https://github.com/SYSUzrc/FDG-Diff.
Related papers
- Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
We propose Diff-Restorer, a universal image restoration method based on the diffusion model.
We utilize the pre-trained visual language model to extract visual prompts from degraded images.
We also design a Degradation-aware Decoder to perform structural correction and convert the latent code to the pixel domain.
arXiv Detail & Related papers (2024-07-04T05:01:10Z) - AdaIR: Adaptive All-in-One Image Restoration via Frequency Mining and Modulation [99.57024606542416]
We propose an adaptive all-in-one image restoration network based on frequency mining and modulation.
Our approach is motivated by the observation that different degradation types impact the image content on different frequency subbands.
The proposed model achieves adaptive reconstruction by accentuating the informative frequency subbands according to different input degradations.
arXiv Detail & Related papers (2024-03-21T17:58:14Z) - Hierarchical Frequency-based Upsampling and Refining for Compressed Video Quality Enhancement [14.653248860008981]
We propose a hierarchical frequency-based upsampling and refining neural network (HFUR) for compressed video quality enhancement.
ImpFreqUp exploits DCT-domain prior derived through implicit DCT transform, and accurately reconstructs the DCT-domain loss via a coarse-to-fine transfer.
HIR is introduced to facilitate cross-collaboration and information compensation between the scales, thus further refine the feature maps and promote the visual quality of the final output.
arXiv Detail & Related papers (2024-03-18T08:13:26Z) - Spatial-and-Frequency-aware Restoration method for Images based on
Diffusion Models [7.947387272047602]
We propose SaFaRI, a spatial-and-frequency-aware diffusion model for Image Restoration (IR)
Our model encourages images to preserve data-fidelity in both the spatial and frequency domains, resulting in enhanced reconstruction quality.
Our thorough evaluation demonstrates that SaFaRI achieves state-of-the-art performance on both the ImageNet datasets and FFHQ datasets.
arXiv Detail & Related papers (2024-01-31T07:11:01Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Reti-Diff: Illumination Degradation Image Restoration with Retinex-based
Latent Diffusion Model [59.08821399652483]
Illumination degradation image restoration (IDIR) techniques aim to improve the visibility of degraded images and mitigate the adverse effects of deteriorated illumination.
Among these algorithms, diffusion model (DM)-based methods have shown promising performance but are often burdened by heavy computational demands and pixel misalignment issues when predicting the image-level distribution.
We propose to leverage DM within a compact latent space to generate concise guidance priors and introduce a novel solution called Reti-Diff for the IDIR task.
Reti-Diff comprises two key components: the Retinex-based latent DM (RLDM) and the Retinex-guided transformer (RG
arXiv Detail & Related papers (2023-11-20T09:55:06Z) - CAMP-Net: Consistency-Aware Multi-Prior Network for Accelerated MRI
Reconstruction [4.967600587813224]
Undersampling k-space data in MRI reduces scan time but pose challenges in image reconstruction.
We propose CAMP-Net, an unrolling-based Consistency-Aware Multi-Prior Network for accelerated MRI reconstruction.
arXiv Detail & Related papers (2023-06-20T02:21:45Z) - Gated Multi-Resolution Transfer Network for Burst Restoration and
Enhancement [75.25451566988565]
We propose a novel Gated Multi-Resolution Transfer Network (GMTNet) to reconstruct a spatially precise high-quality image from a burst of low-quality raw images.
Detailed experimental analysis on five datasets validates our approach and sets a state-of-the-art for burst super-resolution, burst denoising, and low-light burst enhancement.
arXiv Detail & Related papers (2023-04-13T17:54:00Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training.
It is expensive and infeasible to include every type of degradation to cover real-world cases in the training data.
We propose Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image.
arXiv Detail & Related papers (2023-03-13T06:05:18Z) - Degradation-Aware Unfolding Half-Shuffle Transformer for Spectral
Compressive Imaging [142.11622043078867]
We propose a principled Degradation-Aware Unfolding Framework (DAUF) that estimates parameters from the compressed image and physical mask, and then uses these parameters to control each iteration.
By plugging HST into DAUF, we establish the first Transformer-based deep unfolding method, Degradation-Aware Unfolding Half-Shuffle Transformer (DAUHST) for HSI reconstruction.
arXiv Detail & Related papers (2022-05-20T11:37:44Z) - Generalized Octave Convolutions for Learned Multi-Frequency Image
Compression [20.504561050200365]
We propose the first learned multi-frequency image compression and entropy coding approach.
It is based on the recently developed octave convolutions to factorize the latents into high and low frequency (resolution) components.
We show that the proposed generalized octave convolution can improve the performance of other auto-encoder-based computer vision tasks.
arXiv Detail & Related papers (2020-02-24T01:35:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.