論文の概要: A Novel Tracking Framework for Devices in X-ray Leveraging Supplementary Cue-Driven Self-Supervised Features
- arxiv url: http://arxiv.org/abs/2501.12958v1
- Date: Wed, 22 Jan 2025 15:32:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:53:28.292912
- Title: A Novel Tracking Framework for Devices in X-ray Leveraging Supplementary Cue-Driven Self-Supervised Features
- Title(参考訳): 補助的キュー駆動型自己監督機能を活用したX線デバイス追跡フレームワーク
- Authors: Saahil Islam, Venkatesh N. Murthy, Dominik Neumann, Serkan Cimen, Puneet Sharma, Andreas Maier, Dorin Comaniciu, Florin C. Ghesu,
- Abstract要約: 本稿では,その時間的可視性を高める自己教師型学習手法を提案する。
本稿では,事前学習した時間ネットワークを効果的に活用する汎用リアルタイム追跡フレームワークを提案する。
バルーンマーカー検出の最大誤差は87%,カテーテル先端検出の最大誤差は61%減少する。
- 参考スコア(独自算出の注目度): 6.262161803642583
- License:
- Abstract: To restore proper blood flow in blocked coronary arteries via angioplasty procedure, accurate placement of devices such as catheters, balloons, and stents under live fluoroscopy or diagnostic angiography is crucial. Identified balloon markers help in enhancing stent visibility in X-ray sequences, while the catheter tip aids in precise navigation and co-registering vessel structures, reducing the need for contrast in angiography. However, accurate detection of these devices in interventional X-ray sequences faces significant challenges, particularly due to occlusions from contrasted vessels and other devices and distractions from surrounding, resulting in the failure to track such small objects. While most tracking methods rely on spatial correlation of past and current appearance, they often lack strong motion comprehension essential for navigating through these challenging conditions, and fail to effectively detect multiple instances in the scene. To overcome these limitations, we propose a self-supervised learning approach that enhances its spatio-temporal understanding by incorporating supplementary cues and learning across multiple representation spaces on a large dataset. Followed by that, we introduce a generic real-time tracking framework that effectively leverages the pretrained spatio-temporal network and also takes the historical appearance and trajectory data into account. This results in enhanced localization of multiple instances of device landmarks. Our method outperforms state-of-the-art methods in interventional X-ray device tracking, especially stability and robustness, achieving an 87% reduction in max error for balloon marker detection and a 61% reduction in max error for catheter tip detection.
- Abstract(参考訳): 血管形成術により閉塞した冠動脈の適切な血流を回復させるには、カテーテル、バルーン、ステントなどの装置をライブ蛍光顕微鏡または診断血管造影で正確な配置が不可欠である。
バルーンマーカーはX線配列におけるステントの視認性を高めるのに役立ち、カテーテル先端は正確なナビゲーションと血管構造の共登録に役立ち、血管造影におけるコントラストの必要性を減らす。
しかしながら、これらのデバイスを干渉X線シーケンスで正確に検出することは、特にコントラストのある容器や他の装置から排除されたり、周囲を混乱させたりすることで大きな課題に直面し、そのような小さな物体を追跡できなかった。
ほとんどの追跡法は過去と現在の外観の空間的相関に頼っているが、これらの困難な条件をナビゲートするのに不可欠な強い動きの理解が欠如しており、シーン内の複数のインスタンスを効果的に検出することができない。
これらの制約を克服するために,大規模なデータセット上に複数の表現空間をまたいだ補足的手がかりと学習を組み込むことにより,時空間的理解を高める自己教師型学習手法を提案する。
そこで我々は,事前学習した時空間ネットワークを効果的に活用する汎用リアルタイム追跡フレームワークを導入するとともに,過去の出現状況と軌跡データを考慮に入れた。
これにより、デバイスランドマークの複数インスタンスのローカライズが強化される。
バルーンマーカー検出の最大誤差を87%,カテーテル先端検出の最大誤差を61%削減した。
関連論文リスト
- Auxiliary Input in Training: Incorporating Catheter Features into Deep Learning Models for ECG-Free Dynamic Coronary Roadmapping [17.461510586128874]
ダイナミック冠のロードマップ作成は、X線アンギオグラフィーのオフライン画像シーケンスから抽出した血管マップ(「ロードマップ」)をリアルタイムでX線フルオロスコープのライブストリームにオーバーレイする技術である。
コントラスト剤注入の繰り返しを必要とせず、介入手術のナビゲーションガイダンスを提供することを目標とし、放射線曝露や腎不全に伴うリスクを低減することを目的としている。
論文 参考訳(メタデータ) (2024-08-28T17:05:38Z) - Self-Supervised Learning for Interventional Image Analytics: Towards Robust Device Trackers [6.262161803642583]
我々は,1600万以上の干渉X線フレームからなる非常に大きなデータコホートから手続き的特徴を学習するための新しい手法を提案する。
本手法は,フレームベース再構成を利用してフレーム間時間対応を微妙に学習するマスク付き画像モデリング技術に基づいている。
実験の結果,提案手法は参照解に対する最大追従誤差を66.31%削減できることがわかった。
論文 参考訳(メタデータ) (2024-05-02T10:18:22Z) - Real-time guidewire tracking and segmentation in intraoperative x-ray [52.51797358201872]
リアルタイムガイドワイヤ分割と追跡のための2段階のディープラーニングフレームワークを提案する。
第1段階では、ヨロフ5検出器が元のX線画像と合成画像を使って訓練され、ターゲットのガイドワイヤのバウンディングボックスを出力する。
第2段階では、検出された各バウンディングボックスにガイドワイヤを分割するために、新規で効率的なネットワークが提案されている。
論文 参考訳(メタデータ) (2024-04-12T20:39:19Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - ConTrack: Contextual Transformer for Device Tracking in X-ray [13.788670026481324]
ConTrackはトランスフォーマーベースのネットワークで、空間的および時間的コンテキスト情報の両方を使って正確なデバイス検出と追跡を行う。
本手法は,最先端追跡モデルと比較して,検出と追跡の精度が45%以上向上する。
論文 参考訳(メタデータ) (2023-07-14T14:20:09Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
気道セグメンテーションは肺疾患の検査、診断、予後に重要である。
いくつかの小型の気道支線(気管支や終端など)は自動セグメンテーションの難しさを著しく増す。
本稿では,新しいファジィアテンションニューラルネットワークと包括的損失関数を備える,気道セグメンテーションの効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-09-05T16:38:13Z) - Robust Landmark-based Stent Tracking in X-ray Fluoroscopy [10.917460255497227]
単一ステントトラッキングのためのエンドツーエンドのディープラーニングフレームワークを提案する。
U-Netベースのランドマーク検出、ResNetベースのステント提案、機能抽出の3つの階層モジュールで構成されている。
実験により,本手法は最先端のポイントベース追跡モデルと比較して,検出精度が有意に向上していることが示された。
論文 参考訳(メタデータ) (2022-07-20T14:20:03Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
無線画像からの異常検出のための空間認識型メモリキューを提案する(略してSQUID)。
SQUIDは, 微細な解剖学的構造を逐次パターンに分類でき, 推測では画像中の異常(見えない/修正されたパターン)を識別できる。
論文 参考訳(メタデータ) (2021-11-26T13:47:34Z) - FetReg: Placental Vessel Segmentation and Registration in Fetoscopy
Challenge Dataset [57.30136148318641]
Fetoscopy Laser Photocoagulation はツイン・ツー・ツイン・トランスフュージョン症候群(TTTS)の治療に広く用いられている治療法である
これにより、プロシージャ時間と不完全アブレーションが増加し、持続的なTTTSが生じる可能性がある。
コンピュータ支援による介入は、ビデオモザイクによって胎児の視野を広げ、船体ネットワークのより良い視覚化を提供することによって、これらの課題を克服するのに役立つかもしれない。
本稿では,長期フェトスコープビデオからドリフトフリーモザイクを作成することを目的とした,胎児環境のための汎用的でロバストなセマンティックセマンティックセグメンテーションとビデオモザイクアルゴリズムを開発するための大規模マルチセントデータセットを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:14:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。