論文の概要: Implicit Causality-biases in humans and LLMs as a tool for benchmarking LLM discourse capabilities
- arxiv url: http://arxiv.org/abs/2501.12980v1
- Date: Wed, 22 Jan 2025 16:07:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:30:06.459636
- Title: Implicit Causality-biases in humans and LLMs as a tool for benchmarking LLM discourse capabilities
- Title(参考訳): LLM談話能力のベンチマークツールとしてのヒトおよびLSMの因果性ビアーゼ
- Authors: Florian Kankowski, Torgrim Solstad, Sina Zarriess, Oliver Bott,
- Abstract要約: モデルサイズの範囲にまたがる単言語LLMと多言語LLMで生成されたデータと、被験者が提供したデータとを比較した。
我々は,より一般的な談話理解能力のための堅牢なプロキシとして,談話バイアスを伴うLLMの能力を評価するためのベンチマークを開発することを目的とする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper, we compare data generated with mono- and multilingual LLMs spanning a range of model sizes with data provided by human participants in an experimental setting investigating well-established discourse biases. Beyond the comparison as such, we aim to develop a benchmark to assess the capabilities of LLMs with discourse biases as a robust proxy for more general discourse understanding capabilities. More specifically, we investigated Implicit Causality verbs, for which psycholinguistic research has found participants to display biases with regard to three phenomena:\ the establishment of (i) coreference relations (Experiment 1), (ii) coherence relations (Experiment 2), and (iii) the use of particular referring expressions (Experiments 3 and 4). With regard to coreference biases we found only the largest monolingual LLM (German Bloom 6.4B) to display more human-like biases. For coherence relation, no LLM displayed the explanation bias usually found for humans. For referring expressions, all LLMs displayed a preference for referring to subject arguments with simpler forms than to objects. However, no bias effect on referring expression was found, as opposed to recent studies investigating human biases.
- Abstract(参考訳): 本稿では, モデルサイズの範囲にまたがる単言語と多言語で生成されたデータと, 十分に確立された談話バイアスを調査する実験環境において, 被験者が提供したデータとを比較した。
このような比較の他に、より一般的な談話理解能力のための堅牢なプロキシとして、談話バイアスを伴うLLMの能力を評価するためのベンチマークの開発も目指している。
より具体的には、入念な因果動詞を調査し、心理学的研究により参加者が3つの現象に関して偏見を示すことが判明した。
(i)コア参照関係(実験1)
(二)コヒーレンス関係(実験2)、及び
三 特定の参照表現の使用(実験3、実験4)
コア参照バイアスに関しては、より人間的なバイアスを示す最大のモノリンガルLDM(Bloom 6.4B)しか見つからなかった。
コヒーレンス関係では、LLMは人間の説明バイアスを示さなかった。
表現を参照するために、全てのLLMはオブジェクトよりも単純な形式で主観的引数を参照する傾向を示した。
しかしながら、ヒトのバイアスを研究する最近の研究とは対照的に、参照表現に対するバイアス効果は見出されていない。
関連論文リスト
- Towards Implicit Bias Detection and Mitigation in Multi-Agent LLM Interactions [25.809599403713506]
大規模言語モデル(LLM)は、社会をシミュレートし、多様な社会的タスクを実行するために、多くの研究で採用されている。
LLMは、人為的なデータに曝されるため、社会的偏見に影響を受けやすい。
本研究では,多エージェントLDM相互作用における性バイアスの存在について検討し,これらのバイアスを軽減するための2つの方法を提案する。
論文 参考訳(メタデータ) (2024-10-03T15:28:05Z) - Evaluating Implicit Bias in Large Language Models by Attacking From a Psychometric Perspective [66.34066553400108]
我々は,大規模言語モデルが特定のグループに対する暗黙の偏見を厳格に評価する。
我々は,4つの共通のバイアス型の評価データセットを構築した3つのアタックアプローチ,すなわちDguise,Deception,Teachingを提案する。
論文 参考訳(メタデータ) (2024-06-20T06:42:08Z) - White Men Lead, Black Women Help? Benchmarking Language Agency Social Biases in LLMs [58.27353205269664]
社会的偏見は言語機関に現れることがある。
本稿では,言語庁バイアス評価ベンチマークを紹介する。
我々は,最近の3つのLarge Language Model(LLM)生成コンテンツにおいて,言語エージェンシーの社会的バイアスを明らかにした。
論文 参考訳(メタデータ) (2024-04-16T12:27:54Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
LLM(Large-Language-Models)は幅広いアプリケーションにデプロイされ、その応答は社会的影響を増大させる。
価値バイアスは、人間の研究結果と同様、異なるカテゴリにわたるLSMにおいて強いことが示される。
論文 参考訳(メタデータ) (2024-02-16T18:28:43Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
大規模言語モデル(LLM)は、これらのモデルにおけるバイアスの頻度とその緩和に関する激しい議論を引き起こしている。
本稿では,意思決定プロセスに寄与する属性の抽出と仲介を行うためのプロンプトベースの手法を提案する。
観察された異なる治療は、少なくとも部分的には、属性の相違とモデルの相違によるものであることが判明した。
論文 参考訳(メタデータ) (2023-11-15T00:02:25Z) - Are Large Language Models Reliable Judges? A Study on the Factuality
Evaluation Capabilities of LLMs [8.526956860672698]
大きな言語モデル(LLM)は、その顕著な能力のために注目を集めている。
本研究では,テキスト生成モデルにより生成された要約における事実整合性の信頼性評価としてのLCMの可能性について検討する。
論文 参考訳(メタデータ) (2023-11-01T17:42:45Z) - Verbosity Bias in Preference Labeling by Large Language Models [10.242500241407466]
大規模言語モデル(LLM)の評価に伴うバイアスについて検討する。
冗長性バイアス( verbosity bias) -- LLM では,たとえ同じような品質を持つとしても,より冗長な回答を好む場合があります。
論文 参考訳(メタデータ) (2023-10-16T05:19:02Z) - "Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in
LLM-Generated Reference Letters [97.11173801187816]
大規模言語モデル(LLM)は、個人が様々な種類のコンテンツを書くのを支援する効果的なツールとして最近登場した。
本稿では, LLM 生成した参照文字の性別バイアスについて批判的に検討する。
論文 参考訳(メタデータ) (2023-10-13T16:12:57Z) - Simple Linguistic Inferences of Large Language Models (LLMs): Blind Spots and Blinds [59.71218039095155]
我々は,ほとんどの人間が自明に感じる単純な推論タスクにおいて,言語理解能力を評価する。
我々は, (i) 文法的に特定された含意, (ii) 不確実性のある明らかな副詞を持つ前提, (iii) 単調性含意を目標とする。
モデルはこれらの評価セットに対して中程度から低い性能を示す。
論文 参考訳(メタデータ) (2023-05-24T06:41:09Z) - Sources of Hallucination by Large Language Models on Inference Tasks [16.644096408742325]
大規模言語モデル (LLM) は自然言語推論 (NLI) が可能なと主張している。
本研究は, 制御実験を用いて行動調査を行う複数のLLMファミリーに関する一連の行動学的研究について述べる。
論文 参考訳(メタデータ) (2023-05-23T22:24:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。