論文の概要: Anchoring Bias in Large Language Models: An Experimental Study
- arxiv url: http://arxiv.org/abs/2412.06593v2
- Date: Wed, 18 Dec 2024 14:08:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:46:14.043767
- Title: Anchoring Bias in Large Language Models: An Experimental Study
- Title(参考訳): 大規模言語モデルにおけるバイアスのアンカリング : 実験的検討
- Authors: Jiaxu Lou, Yifan Sun,
- Abstract要約: GPT-4やGeminiのような大規模言語モデル(LLM)は、非常に高度な人工知能を持っている。
この研究は、初期情報が判断に不均衡に影響を及ぼす認知バイアスであるアンカーリングバイアスを論じる。
- 参考スコア(独自算出の注目度): 5.229564709919574
- License:
- Abstract: Large Language Models (LLMs) like GPT-4 and Gemini have significantly advanced artificial intelligence by enabling machines to generate and comprehend human-like text. Despite their impressive capabilities, LLMs are not immune to limitations, including various biases. While much research has explored demographic biases, the cognitive biases in LLMs have not been equally scrutinized. This study delves into anchoring bias, a cognitive bias where initial information disproportionately influences judgment. Utilizing an experimental dataset, we examine how anchoring bias manifests in LLMs and verify the effectiveness of various mitigation strategies. Our findings highlight the sensitivity of LLM responses to biased hints. At the same time, our experiments show that, to mitigate anchoring bias, one needs to collect hints from comprehensive angles to prevent the LLMs from being anchored to individual pieces of information, while simple algorithms such as Chain-of-Thought, Thoughts of Principles, Ignoring Anchor Hints, and Reflection are not sufficient.
- Abstract(参考訳): GPT-4 や Gemini のような大規模言語モデル (LLM) は、機械が人間のようなテキストを生成、理解できるようにすることで、人工知能を著しく進歩させた。
その印象的な能力にもかかわらず、LSMは様々なバイアスを含む制限に免疫を持たない。
多くの研究が人口統計学的偏見を調査してきたが、LLMの認知的偏見は等しく精査されていない。
この研究は、初期情報が判断に不均衡に影響を及ぼす認知バイアスであるアンカーリングバイアスを論じる。
実験データを用いて, LLMにおけるバイアスのアンカーについて検討し, 各種緩和策の有効性を検証した。
以上の結果から,LLM応答の感度が示唆された。
同時に、我々の実験は、アンカーバイアスを軽減するために、LLMが個々の情報にアンカーされるのを防ぐために包括的な角度からヒントを収集する必要がある一方で、Chain-of-Thought、Thoughts of Principles、Ignoring Anchor Hints、Reflectionといった単純なアルゴリズムは不十分であることを示した。
関連論文リスト
- AI Can Be Cognitively Biased: An Exploratory Study on Threshold Priming in LLM-Based Batch Relevance Assessment [37.985947029716016]
大規模言語モデル(LLM)は高度な理解能力を示しているが、トレーニングデータから人間のバイアスを継承する可能性がある。
関連判定におけるしきい値プライミング効果の影響について検討した。
論文 参考訳(メタデータ) (2024-09-24T12:23:15Z) - Unboxing Occupational Bias: Grounded Debiasing of LLMs with U.S. Labor Data [9.90951705988724]
大規模言語モデル(LLM)は、社会的バイアスを継承し増幅する傾向がある。
LLMバイアスは、不公平な慣行をもたらし、社会的不平等を悪化させる。
論文 参考訳(メタデータ) (2024-08-20T23:54:26Z) - Evaluating Implicit Bias in Large Language Models by Attacking From a Psychometric Perspective [66.34066553400108]
我々は,大規模言語モデルが特定のグループに対する暗黙の偏見を厳格に評価する。
我々は,4つの共通のバイアス型の評価データセットを構築した3つのアタックアプローチ,すなわちDguise,Deception,Teachingを提案する。
論文 参考訳(メタデータ) (2024-06-20T06:42:08Z) - UniBias: Unveiling and Mitigating LLM Bias through Internal Attention and FFN Manipulation [12.04811490937078]
フィードフォワードニューラルネットワーク(FFN)とアテンションヘッドが大規模言語モデル(LLM)のバイアスをもたらすかを検討する。
これらのバイアスを軽減するために,推定のみの手法であるUniBiasを導入し,バイアス付きFFNベクトルとアテンションヘッドを効果的に識別・除去する。
論文 参考訳(メタデータ) (2024-05-31T03:59:15Z) - Investigating Bias in LLM-Based Bias Detection: Disparities between LLMs and Human Perception [13.592532358127293]
大規模言語モデル(LLM)におけるバイアスの存在と性質について検討する。
LLMが特に政治的バイアス予測やテキスト継続タスクにおいてバイアスを示すかどうかを調査する。
我々は,素早い工学とモデル微調整を含む脱バイアス戦略を提案する。
論文 参考訳(メタデータ) (2024-03-22T00:59:48Z) - Cognitive Bias in Decision-Making with LLMs [19.87475562475802]
大規模言語モデル(LLM)は、幅広い意思決定タスクをサポートするツールとして大きな可能性を秘めている。
LLMは保護されたグループに対する社会的バイアスを継承し、認知バイアスと機能的に類似している。
私たちの研究は、LLMの認知バイアスを発見し、評価し、緩和するために設計されたフレームワークであるBiasBusterを紹介します。
論文 参考訳(メタデータ) (2024-02-25T02:35:56Z) - Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement [75.7148545929689]
大規模言語モデル(LLM)は、特定のタスクの自己フィードバックを通じてパフォーマンスを向上し、他のタスクを劣化させる。
我々は、LSMの自己バイアス(自称世代を好む傾向)を正式に定義する。
我々は、翻訳、制約付きテキスト生成、数学的推論の6つのLCMを解析する。
論文 参考訳(メタデータ) (2024-02-18T03:10:39Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
LLM(Large-Language-Models)は幅広いアプリケーションにデプロイされ、その応答は社会的影響を増大させる。
価値バイアスは、人間の研究結果と同様、異なるカテゴリにわたるLSMにおいて強いことが示される。
論文 参考訳(メタデータ) (2024-02-16T18:28:43Z) - Self-Debiasing Large Language Models: Zero-Shot Recognition and
Reduction of Stereotypes [73.12947922129261]
ステレオタイピングを減らすために,大規模言語モデルのゼロショット機能を活用している。
自己嫌悪は、9つの異なる社会集団におけるステレオタイピングの度合いを著しく低下させることが示される。
この研究が、バイアス軽減のための他のゼロショット技術に関する調査をオープンにすることを願っている。
論文 参考訳(メタデータ) (2024-02-03T01:40:11Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
大規模言語モデル(LLM)は、これらのモデルにおけるバイアスの頻度とその緩和に関する激しい議論を引き起こしている。
本稿では,意思決定プロセスに寄与する属性の抽出と仲介を行うためのプロンプトベースの手法を提案する。
観察された異なる治療は、少なくとも部分的には、属性の相違とモデルの相違によるものであることが判明した。
論文 参考訳(メタデータ) (2023-11-15T00:02:25Z) - Do LLMs exhibit human-like response biases? A case study in survey
design [66.1850490474361]
大規模言語モデル(LLM)が人間の反応バイアスをどの程度反映しているかについて検討する。
アンケート調査では, LLMが人間のような応答バイアスを示すかどうかを評価するためのデータセットとフレームワークを設計した。
9つのモデルに対する総合的な評価は、一般のオープンかつ商用のLCMは、一般的に人間のような振る舞いを反映しないことを示している。
論文 参考訳(メタデータ) (2023-11-07T15:40:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。