論文の概要: Comparison of feature extraction tools for network traffic data
- arxiv url: http://arxiv.org/abs/2501.13004v1
- Date: Wed, 22 Jan 2025 16:45:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:27:49.184508
- Title: Comparison of feature extraction tools for network traffic data
- Title(参考訳): ネットワークトラフィックデータの特徴抽出ツールの比較
- Authors: Borys Lypa, Ivan Horyn, Natalia Zagorodna, Dmytro Tymoshchuk, Taras Lechachenko,
- Abstract要約: これは、巨大な生のネットワークデータを有意義で管理可能な機能に変換し、悪意のあるアクティビティを分析し、検出するのに役立つ。
特徴抽出ツールのよい選択は、人工知能を用いた侵入検知システム(AI-IDS)の構築における重要なステップである
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The comparison analysis of the most popular tools to extract features from network traffic is conducted in this paper. Feature extraction plays a crucial role in Intrusion Detection Systems (IDS) because it helps to transform huge raw network data into meaningful and manageable features for analysis and detection of malicious activities. The good choice of feature extraction tool is an essential step in construction of Artificial Intelligence-based Intrusion Detection Systems (AI-IDS), which can help to enhance the efficiency, accuracy, and scalability of such systems.
- Abstract(参考訳): 本稿では,ネットワークトラフィックから特徴を抽出する最も一般的なツールの比較分析を行った。
特徴抽出は、侵入検知システム(IDS)において重要な役割を担っている。これは、巨大な生のネットワークデータを有意義で管理可能な機能に変換し、悪意のある活動を分析し、検出するのに役立つからだ。
特徴抽出ツールの優れた選択は、人工知能ベースの侵入検知システム(AI-IDS)の構築における重要なステップであり、これらのシステムの効率、精度、スケーラビリティを高めるのに役立つ。
関連論文リスト
- Feature Selection for Network Intrusion Detection [3.7414804164475983]
本稿では,ネットワーク侵入を検出する際に,非情報的特徴の排除を容易にする情報理論を提案する。
提案手法は,ニューラルネットワークを用いた関数近似に基づいて,再帰層を組み込んだアプローチのバージョンを実現する。
論文 参考訳(メタデータ) (2024-11-18T14:25:55Z) - Exploring Feature Importance and Explainability Towards Enhanced ML-Based DoS Detection in AI Systems [3.3150909292716477]
Denial of Service(DoS)攻撃は、AIシステムセキュリティの領域において重大な脅威となる。
統計的および機械学習(ML)に基づくDoS分類と検出アプローチは、幅広い特徴選択メカニズムを使用して、ネットワークトラフィックデータセットから特徴サブセットを選択する。
本稿では,MLによるDoS攻撃検出における特徴選択の重要性について検討する。
論文 参考訳(メタデータ) (2024-11-04T19:51:08Z) - Efficient Network Traffic Feature Sets for IoT Intrusion Detection [0.0]
この研究は、複数のIoTネットワークデータセットで、Information Gain、Chi-Squared Test、Recursive Feature Elimination、Mean Absolute Deviation、Dispersion Ratioといった、さまざまな機能選択メソッドの組み合わせによって提供される機能セットを評価します。
より小さな特徴セットがMLモデルの分類性能とトレーニング時間の両方に与える影響を比較し,IoT侵入検出の計算効率を高めることを目的とした。
論文 参考訳(メタデータ) (2024-06-12T09:51:29Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - ECS -- an Interactive Tool for Data Quality Assurance [63.379471124899915]
データ品質の保証のための新しいアプローチを提案する。
この目的のために、まず数学的基礎を議論し、そのアプローチを複数の例を用いて提示する。
これにより、安全クリティカルなシステムにおいて、潜在的に有害な特性を持つデータポイントが検出される。
論文 参考訳(メタデータ) (2023-07-10T06:49:18Z) - Influencer Detection with Dynamic Graph Neural Networks [56.1837101824783]
インフルエンサー検出のための動的グラフニューラルネットワーク(GNN)の構成について検討する。
GNNにおける深層多面的注意と時間特性の符号化が性能を著しく向上させることを示す。
論文 参考訳(メタデータ) (2022-11-15T13:00:25Z) - Finding Facial Forgery Artifacts with Parts-Based Detectors [73.08584805913813]
顔の個々の部分に焦点を絞った一連の偽造検知システムを設計する。
これらの検出器を用いて、FaceForensics++、Celeb-DF、Facebook Deepfake Detection Challengeデータセットの詳細な実験分析を行う。
論文 参考訳(メタデータ) (2021-09-21T16:18:45Z) - DeepTimeAnomalyViz: A Tool for Visualizing and Post-processing Deep
Learning Anomaly Detection Results for Industrial Time-Series [88.12892448747291]
DeTAVIZ インタフェースは Web ブラウザをベースとした可視化ツールで,特定の問題における DL ベースの異常検出の実現可能性の迅速な探索と評価を行う。
DeTAVIZを使えば、ユーザーは複数のポスト処理オプションを簡単かつ迅速に繰り返し、異なるモデルを比較することができ、選択したメトリックに対して手動で最適化できる。
論文 参考訳(メタデータ) (2021-09-21T10:38:26Z) - Supervised Feature Selection Techniques in Network Intrusion Detection:
a Critical Review [9.177695323629896]
機械学習技術は、ネットワーク侵入検出の貴重なサポートになりつつある。
データトラフィックを特徴付ける膨大な多様性と多数の機能に対処することは難しい問題です。
機能領域を縮小し、最も重要な機能のみを保持することで、FS(Feature Selection)はネットワーク管理において重要な前処理ステップとなる。
論文 参考訳(メタデータ) (2021-04-11T08:42:01Z) - TDA-Net: Fusion of Persistent Homology and Deep Learning Features for
COVID-19 Detection in Chest X-Ray Images [0.7734726150561088]
トポロジカルデータ分析は、データセットの構造を抽出し比較するための堅牢なツールとして登場した。
両強力なツールの特徴を捉えるために,トポロジと深い特徴を融合した新しいアンサンブルネットワークである textitTDA-Net を提案する。
論文 参考訳(メタデータ) (2021-01-21T01:51:12Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
外乱検出は重要なデータマイニングの課題であり、多くの実用的応用がある。
本稿では,最適なニューラルネットワークモデルを探すことを目的とした自動外乱検出フレームワークであるAutoODを提案する。
さまざまな実世界のベンチマークデータセットに対する実験結果から、AutoODが特定したディープモデルが最高のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-06-19T18:57:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。