Neural network enhanced cross entropy benchmark for monitored circuits
- URL: http://arxiv.org/abs/2501.13005v1
- Date: Wed, 22 Jan 2025 16:46:39 GMT
- Title: Neural network enhanced cross entropy benchmark for monitored circuits
- Authors: Yangrui Hu, Yi Hong Teoh, William Witczak-Krempa, Roger G. Melko,
- Abstract summary: We use a recurrent neural network to learn a representation of the measurement record for a native trapped-ion MIPT.
We show that using this generative model can substantially reduce the number of measurements required to accurately estimate the cross entropy.
- Score: 0.0
- License:
- Abstract: We explore the interplay of quantum computing and machine learning to advance experimental protocols for observing measurement-induced phase transitions (MIPT) in quantum devices. In particular, we focus on trapped ion monitored circuits and apply the cross entropy benchmark recently introduced by [Li et al., Phys. Rev. Lett. 130, 220404 (2023)], which can mitigate the post-selection problem. By doing so, we reduce the number of projective measurements -- the sample complexity -- required per random circuit realization, which is a critical limiting resource in real devices. Since these projective measurement outcomes form a classical probability distribution, they are suitable for learning with a standard machine learning generative model. In this paper, we use a recurrent neural network (RNN) to learn a representation of the measurement record for a native trapped-ion MIPT, and show that using this generative model can substantially reduce the number of measurements required to accurately estimate the cross entropy. This illustrates the potential of combining quantum computing and machine learning to overcome practical challenges in realizing quantum experiments.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Challenges and opportunities in the supervised learning of quantum
circuit outputs [0.0]
Deep neural networks have proven capable of predicting some output properties of relevant random quantum circuits.
We investigate if and to what extent neural networks can learn to predict the output expectation values of circuits often employed in variational quantum algorithms.
arXiv Detail & Related papers (2024-02-07T16:10:13Z) - Error-tolerant quantum convolutional neural networks for symmetry-protected topological phases [0.0]
Quantum neural networks based on parametrized quantum circuits, measurements and feed-forward can process large amounts of quantum data.
We construct quantum convolutional neural networks (QCNNs) that can recognize different symmetry-protected topological phases.
We show that the QCNN output is robust against symmetry-breaking errors below a threshold error probability.
arXiv Detail & Related papers (2023-07-07T16:47:02Z) - A Quantum Optical Recurrent Neural Network for Online Processing of
Quantum Times Series [0.7087237546722617]
We show that a quantum optical recurrent neural network (QORNN) can enhance the transmission rate of quantum channels.
We also show that our model can counteract similar memory effects if they are unwanted.
We run a small-scale version of this last task on the photonic processor Borealis.
arXiv Detail & Related papers (2023-05-31T19:19:25Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
We adapt common neural network models to learn complex groundstate wavefunctions for several molecular qubit Hamiltonians.
We find that using a neural network model provides a robust improvement over using single-copy measurement outcomes alone to reconstruct observables.
arXiv Detail & Related papers (2022-06-30T17:45:05Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Toward Physically Realizable Quantum Neural Networks [15.018259942339446]
Current solutions for quantum neural networks (QNNs) pose challenges concerning their scalability.
The exponential state space of QNNs poses challenges for the scalability of training procedures.
This paper presents a new model for QNNs that relies on band-limited Fourier expansions of transfer functions of quantum perceptrons.
arXiv Detail & Related papers (2022-03-22T23:03:32Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
We show that the process of finding requirements on both a graph type and a quantum system coherence can be automated.
The automation is done by using a convolutional neural network of a particular type that learns to understand with which network and under which coherence requirements quantum advantage is possible.
Our results are of importance for demonstration of advantage in quantum experiments and pave the way towards automating scientific research and discoveries.
arXiv Detail & Related papers (2020-01-15T18:36:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.