TimeFilter: Patch-Specific Spatial-Temporal Graph Filtration for Time Series Forecasting
- URL: http://arxiv.org/abs/2501.13041v1
- Date: Wed, 22 Jan 2025 17:40:17 GMT
- Title: TimeFilter: Patch-Specific Spatial-Temporal Graph Filtration for Time Series Forecasting
- Authors: Yifan Hu, Guibin Zhang, Peiyuan Liu, Disen Lan, Naiqi Li, Dawei Cheng, Tao Dai, Shu-Tao Xia, Shirui Pan,
- Abstract summary: We propose TimeFilter, a graph-based framework for adaptive and fine-grained dependency modeling.
TimeFilter filters out irrelevant correlations and preserves the most critical ones through patch-specific filtering.
- Score: 87.71846357354384
- License:
- Abstract: Current time series forecasting methods can be broadly classified into two categories: Channel Independent (CI) and Channel Dependent (CD) strategies, both aiming to capture the complex dependencies within time series data. However, the CI strategy fails to exploit highly correlated covariate information, while the CD strategy integrates all dependencies, including irrelevant or noisy ones, thus compromising generalization. To mitigate these issues, recent works have introduced the Channel Clustering (CC) strategy by grouping channels with similar characteristics and applying different modeling techniques to each cluster. However, coarse-grained clustering cannot flexibly capture complex, time-varying interactions. Addressing the above challenges, we propose TimeFilter, a graph-based framework for adaptive and fine-grained dependency modeling. Specifically, after constructing the graph with the input sequence, TimeFilter filters out irrelevant correlations and preserves the most critical ones through patch-specific filtering. Extensive experiments on 13 real-world datasets from various application domains demonstrate the state-of-the-art performance of TimeFilter. The code is available at https://github.com/TROUBADOUR000/TimeFilter.
Related papers
- How Much Can Time-related Features Enhance Time Series Forecasting? [27.030553080458716]
We introduce a module designed to encode time-related features, Time Stamp Forecaster (TimeSter)
TimeSter significantly improves the performance of a single linear projector, reducing MSE by an average of 23% on benchmark datasets such as Electricity and Traffic.
arXiv Detail & Related papers (2024-12-02T14:45:26Z) - Contrastive Continual Multi-view Clustering with Filtered Structural
Fusion [57.193645780552565]
Multi-view clustering thrives in applications where views are collected in advance.
It overlooks scenarios where data views are collected sequentially, i.e., real-time data.
Some methods are proposed to handle it but are trapped in a stability-plasticity dilemma.
We propose Contrastive Continual Multi-view Clustering with Filtered Structural Fusion.
arXiv Detail & Related papers (2023-09-26T14:18:29Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - Deep Temporal Graph Clustering [77.02070768950145]
We propose a general framework for deep Temporal Graph Clustering (GC)
GC introduces deep clustering techniques to suit the interaction sequence-based batch-processing pattern of temporal graphs.
Our framework can effectively improve the performance of existing temporal graph learning methods.
arXiv Detail & Related papers (2023-05-18T06:17:50Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - Are uGLAD? Time will tell! [4.005044708572845]
We introduce a novel approach for multivariate time series segmentation using conditional independence (CI) graphs.
CI graphs are probabilistic graphical models that represents the partial correlations between the nodes.
We demonstrate successful empirical results on a Physical Activity Monitoring data.
arXiv Detail & Related papers (2023-03-21T07:46:28Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Spectral Temporal Graph Neural Network for Multivariate Time-series
Forecasting [19.50001395081601]
StemGNN captures inter-series correlations and temporal dependencies.
It can be predicted effectively by convolution and sequential learning modules.
We conduct extensive experiments on ten real-world datasets to demonstrate the effectiveness of StemGNN.
arXiv Detail & Related papers (2021-03-13T13:44:20Z) - Data Curves Clustering Using Common Patterns Detection [0.0]
Analyzing and clustering time series, or in general any kind of curves, could be critical for several human activities.
New Curves Clustering Using Common Patterns (3CP) methodology is introduced.
arXiv Detail & Related papers (2020-01-05T18:36:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.