TimeFilter: Patch-Specific Spatial-Temporal Graph Filtration for Time Series Forecasting
- URL: http://arxiv.org/abs/2501.13041v2
- Date: Tue, 20 May 2025 07:40:13 GMT
- Title: TimeFilter: Patch-Specific Spatial-Temporal Graph Filtration for Time Series Forecasting
- Authors: Yifan Hu, Guibin Zhang, Peiyuan Liu, Disen Lan, Naiqi Li, Dawei Cheng, Tao Dai, Shu-Tao Xia, Shirui Pan,
- Abstract summary: Time series forecasting methods generally fall into two main categories: Channel Independent (CI) and Channel Dependent (CD)<n>Recent advances in Channel Clustering (CC) aim to refine dependency modeling by grouping channels with similar characteristics.<n>We propose TimeFilter, a GNN-based framework for adaptive and fine-grained dependency modeling.
- Score: 87.71846357354384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series forecasting methods generally fall into two main categories: Channel Independent (CI) and Channel Dependent (CD) strategies. While CI overlooks important covariate relationships, CD captures all dependencies without distinction, introducing noise and reducing generalization. Recent advances in Channel Clustering (CC) aim to refine dependency modeling by grouping channels with similar characteristics and applying tailored modeling techniques. However, coarse-grained clustering struggles to capture complex, time-varying interactions effectively. To address these challenges, we propose TimeFilter, a GNN-based framework for adaptive and fine-grained dependency modeling. After constructing the graph from the input sequence, TimeFilter refines the learned spatial-temporal dependencies by filtering out irrelevant correlations while preserving the most critical ones in a patch-specific manner. Extensive experiments on 13 real-world datasets from diverse application domains demonstrate the state-of-the-art performance of TimeFilter. The code is available at https://github.com/TROUBADOUR000/TimeFilter.
Related papers
- AverageTime: Enhance Long-Term Time Series Forecasting with Simple Averaging [6.125620036017928]
Long-term time series forecasting focuses on leveraging historical data to predict future trends.<n>The core challenge lies in effectively modeling dependencies both within sequences and channels.<n>Our research proposes a new approach for capturing sequence and channel dependencies: AverageTime.
arXiv Detail & Related papers (2024-12-30T05:56:25Z) - LMS-AutoTSF: Learnable Multi-Scale Decomposition and Integrated Autocorrelation for Time Series Forecasting [4.075971633195745]
We introduce LMS-AutoTSF, a novel time series forecasting architecture that incorporates autocorrelation.<n>Unlike models that rely on predefined trend and seasonal components, LMS-AutoTSF employs two separate encoders per scale.<n>A key innovation in our approach is the integration of autocorrelation, achieved by computing lagged differences in time steps.
arXiv Detail & Related papers (2024-12-09T09:31:58Z) - How Much Can Time-related Features Enhance Time Series Forecasting? [27.030553080458716]
We introduce a module designed to encode time-related features, Time Stamp Forecaster (TimeSter)
TimeSter significantly improves the performance of a single linear projector, reducing MSE by an average of 23% on benchmark datasets such as Electricity and Traffic.
arXiv Detail & Related papers (2024-12-02T14:45:26Z) - Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
Unsupervised anomaly detection in time series is essential in industrial applications, as it significantly reduces the need for manual intervention.
Traditional methods use Graph Neural Networks (GNNs) or Transformers to analyze spatial while RNNs to model temporal dependencies.
This paper introduces a novel temporal model built on an enhanced Graph Attention Network (GAT) for multivariate time series anomaly detection called TopoGDN.
arXiv Detail & Related papers (2024-08-23T14:06:30Z) - Contrastive Continual Multi-view Clustering with Filtered Structural
Fusion [57.193645780552565]
Multi-view clustering thrives in applications where views are collected in advance.
It overlooks scenarios where data views are collected sequentially, i.e., real-time data.
Some methods are proposed to handle it but are trapped in a stability-plasticity dilemma.
We propose Contrastive Continual Multi-view Clustering with Filtered Structural Fusion.
arXiv Detail & Related papers (2023-09-26T14:18:29Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - Deep Temporal Graph Clustering [77.02070768950145]
We propose a general framework for deep Temporal Graph Clustering (GC)
GC introduces deep clustering techniques to suit the interaction sequence-based batch-processing pattern of temporal graphs.
Our framework can effectively improve the performance of existing temporal graph learning methods.
arXiv Detail & Related papers (2023-05-18T06:17:50Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - Are uGLAD? Time will tell! [4.005044708572845]
We introduce a novel approach for multivariate time series segmentation using conditional independence (CI) graphs.
CI graphs are probabilistic graphical models that represents the partial correlations between the nodes.
We demonstrate successful empirical results on a Physical Activity Monitoring data.
arXiv Detail & Related papers (2023-03-21T07:46:28Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Spectral Temporal Graph Neural Network for Multivariate Time-series
Forecasting [19.50001395081601]
StemGNN captures inter-series correlations and temporal dependencies.
It can be predicted effectively by convolution and sequential learning modules.
We conduct extensive experiments on ten real-world datasets to demonstrate the effectiveness of StemGNN.
arXiv Detail & Related papers (2021-03-13T13:44:20Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - Data Curves Clustering Using Common Patterns Detection [0.0]
Analyzing and clustering time series, or in general any kind of curves, could be critical for several human activities.
New Curves Clustering Using Common Patterns (3CP) methodology is introduced.
arXiv Detail & Related papers (2020-01-05T18:36:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.