Beyond the Lungs: Extending the Field of View in Chest CT with Latent Diffusion Models
- URL: http://arxiv.org/abs/2501.13068v1
- Date: Wed, 22 Jan 2025 18:28:18 GMT
- Title: Beyond the Lungs: Extending the Field of View in Chest CT with Latent Diffusion Models
- Authors: Lianrui Zuo, Kaiwen Xu, Dingjie Su, Xin Yu, Aravind R. Krishnan, Yihao Liu, Shunxing Bao, Thomas Li, Kim L. Sandler, Fabien Maldonado, Bennett A. Landman,
- Abstract summary: Intermediary between the human lungs and other organs, such as the liver and kidneys, is crucial for understanding the underlying risks and effects of lung diseases.
Most research chest CT imaging is focused solely on the lungs due to considerations of cost and radiation dose.
This restricted field of view poses challenges to comprehensive analysis and hinders the ability to gain insights into the impact of lung diseases on other organs.
- Score: 15.573780808103985
- License:
- Abstract: The interconnection between the human lungs and other organs, such as the liver and kidneys, is crucial for understanding the underlying risks and effects of lung diseases and improving patient care. However, most research chest CT imaging is focused solely on the lungs due to considerations of cost and radiation dose. This restricted field of view (FOV) in the acquired images poses challenges to comprehensive analysis and hinders the ability to gain insights into the impact of lung diseases on other organs. To address this, we propose SCOPE (Spatial Coverage Optimization with Prior Encoding), a novel approach to capture the inter-organ relationships from CT images and extend the FOV of chest CT images. Our approach first trains a variational autoencoder (VAE) to encode 2D axial CT slices individually, then stacks the latent representations of the VAE to form a 3D context for training a latent diffusion model. Once trained, our approach extends the FOV of CT images in the z-direction by generating new axial slices in a zero-shot manner. We evaluated our approach on the National Lung Screening Trial (NLST) dataset, and results suggest that it effectively extends the FOV to include the liver and kidneys, which are not completely covered in the original NLST data acquisition. Quantitative results on a held-out whole-body dataset demonstrate that the generated slices exhibit high fidelity with acquired data, achieving an SSIM of 0.81.
Related papers
- High-Fidelity 3D Lung CT Synthesis in ARDS Swine Models Using Score-Based 3D Residual Diffusion Models [13.79974752491887]
Acute respiratory distress syndrome (ARDS) is a severe condition characterized by lung inflammation and respiratory failure, with a high mortality rate of approximately 40%.
Traditional imaging methods, such as chest X-rays, provide only two-dimensional views, limiting their effectiveness in fully assessing lung pathology.
This study synthesizes high-fidelity 3D lung CT from 2D generated X-ray images with associated physiological parameters using a score-based 3D residual diffusion model.
arXiv Detail & Related papers (2024-09-26T18:22:34Z) - Diffusion-based Generative Image Outpainting for Recovery of FOV-Truncated CT Images [10.350643783811174]
Field-of-view (FOV) recovery of truncated chest CT scans is crucial for accurate body composition analysis.
We present a method for recovering truncated CT slices using generative image outpainting.
Our model reliably recovers the truncated anatomy and outperforms the previous state-of-the-art despite being trained on 87% less data.
arXiv Detail & Related papers (2024-06-07T09:15:29Z) - Body Composition Assessment with Limited Field-of-view Computed
Tomography: A Semantic Image Extension Perspective [5.373119949253442]
Field-of-view (FOV) tissue truncation beyond the lungs is common in routine lung screening computed tomography (CT)
In this work, we formulate the problem from the semantic image extension perspective which only requires image data as inputs.
The proposed two-stage method identifies a new FOV border based on the estimated extent of the complete body and imputes missing tissues in the truncated region.
arXiv Detail & Related papers (2022-07-13T23:19:22Z) - Unsupervised Contrastive Learning based Transformer for Lung Nodule
Detection [6.693379403133435]
Early detection of lung nodules with computed tomography (CT) is critical for the longer survival of lung cancer patients and better quality of life.
Computer-aided detection/diagnosis (CAD) is proven valuable as a second or concurrent reader in this context.
accurate detection of lung nodules remains a challenge for such CAD systems and even radiologists due to variability in size, location, and appearance of lung nodules.
Motivated by recent computer vision techniques, here we present a self-supervised region-based 3D transformer model to identify lung nodules.
arXiv Detail & Related papers (2022-04-30T01:19:00Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Segmentation of Lung Tumor from CT Images using Deep Supervision [0.8733639720576208]
Lung cancer is a leading cause of death in most countries of the world.
This paper approaches lung tumor segmentation by applying two-dimensional discrete wavelet transform (DWT) on the LOTUS dataset.
arXiv Detail & Related papers (2021-11-17T17:50:18Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.