論文の概要: Attention-Driven Hierarchical Reinforcement Learning with Particle Filtering for Source Localization in Dynamic Fields
- arxiv url: http://arxiv.org/abs/2501.13084v1
- Date: Wed, 22 Jan 2025 18:45:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:53:17.070304
- Title: Attention-Driven Hierarchical Reinforcement Learning with Particle Filtering for Source Localization in Dynamic Fields
- Title(参考訳): 動的場の音源定位のための粒子フィルタを用いた注意駆動階層型強化学習
- Authors: Yiwei Shi, Mengyue Yang, Qi Zhang, Weinan Zhang, Cunjia Liu, Weiru Liu,
- Abstract要約: ベイズ推論と強化学習を統合した階層的枠組みを提案する。
本結果は,動的場推定タスクにおけるフレームワークの幅広い応用の可能性を強調した。
- 参考スコア(独自算出の注目度): 24.30636951062104
- License:
- Abstract: In many real-world scenarios, such as gas leak detection or environmental pollutant tracking, solving the Inverse Source Localization and Characterization problem involves navigating complex, dynamic fields with sparse and noisy observations. Traditional methods face significant challenges, including partial observability, temporal and spatial dynamics, out-of-distribution generalization, and reward sparsity. To address these issues, we propose a hierarchical framework that integrates Bayesian inference and reinforcement learning. The framework leverages an attention-enhanced particle filtering mechanism for efficient and accurate belief updates, and incorporates two complementary execution strategies: Attention Particle Filtering Planning and Attention Particle Filtering Reinforcement Learning. These approaches optimize exploration and adaptation under uncertainty. Theoretical analysis proves the convergence of the attention-enhanced particle filter, while extensive experiments across diverse scenarios validate the framework's superior accuracy, adaptability, and computational efficiency. Our results highlight the framework's potential for broad applications in dynamic field estimation tasks.
- Abstract(参考訳): ガス漏れの検出や環境汚染の追跡といった現実のシナリオでは、逆ソースの局所化と特性の問題を解くには、スパースでノイズの多い観測を伴う複雑な動的場をナビゲートする必要がある。
従来の手法では、部分的可観測性、時間的・空間的ダイナミクス、分布外一般化、報酬空間性といった重要な課題に直面している。
これらの問題に対処するため,ベイズ推論と強化学習を統合した階層的枠組みを提案する。
このフレームワークは、注意を喚起する粒子フィルタリング機構を利用して、効率的で正確な信念更新を行い、注意粒子フィルタリング計画と注意粒子フィルタリング強化学習という2つの補完的な実行戦略を取り入れている。
これらのアプローチは不確実性の下で探索と適応を最適化する。
理論解析は注意を喚起する粒子フィルタの収束を証明し、様々なシナリオにわたる広範な実験はフレームワークの優れた精度、適応性、計算効率を検証している。
本結果は,動的場推定タスクにおけるフレームワークの幅広い応用の可能性を強調した。
関連論文リスト
- Adapting Physics-Informed Neural Networks for Bifurcation Detection in Ecological Migration Models [0.16442870218029523]
本研究では,生物移動モデルにおける分岐現象の解析への物理情報ニューラルネットワーク(PINN)の適用について検討する。
拡散-回避-反応方程式の基本原理を深層学習技術と組み合わせることで、種移動ダイナミクスの複雑さに対処する。
論文 参考訳(メタデータ) (2024-09-01T08:00:31Z) - Exploring End-to-end Differentiable Neural Charged Particle Tracking -- A Loss Landscape Perspective [0.0]
粒子追跡のためのE2E差分型決定型学習手法を提案する。
離散的な代入操作の微分可能なバリエーションは、効率的なネットワーク最適化を可能にすることを示す。
E2Eの微分性は、勾配情報の一般利用に加えて、予測不安定性を緩和するロバスト粒子追跡のための重要なツールである、と我々は主張する。
論文 参考訳(メタデータ) (2024-07-18T11:42:58Z) - Modeling Spatio-temporal Dynamical Systems with Neural Discrete Learning
and Levels-of-Experts [33.335735613579914]
本稿では,ビデオフレームなどの観測結果に基づいて,時間・動的システムの状態変化をモデル化し,推定することの課題に対処する。
本稿では、一般的な物理プロセスの法則をデータ駆動方式で捉えるために、ユニバーサルエキスパートモジュール、すなわち光フロー推定コンポーネントを提案する。
我々は、既存のSOTAベースラインと比較して、提案フレームワークが大きなパフォーマンスマージンを達成することを示すため、広範囲な実験と改善を実施している。
論文 参考訳(メタデータ) (2024-02-06T06:27:07Z) - An overview of differentiable particle filters for data-adaptive
sequential Bayesian inference [19.09640071505051]
粒子フィルタ(PF)は非線形逐次状態推定問題を解くための効率的なメカニズムを提供する。
新たなトレンドは、ニューラルネットワークを使用して粒子フィルタのコンポーネントを構築し、勾配降下によって最適化することである。
微分可能な粒子フィルタは複雑な高次元タスクにおいて逐次データに対する推論を行うための有望な計算ツールである。
論文 参考訳(メタデータ) (2023-02-19T18:03:53Z) - Spectral Decomposition Representation for Reinforcement Learning [100.0424588013549]
本稿では, スペクトル分解表現法(SPEDER)を提案する。この手法は, データ収集ポリシーに急激な依存を生じさせることなく, ダイナミックスから状態-作用の抽象化を抽出する。
理論的解析により、オンライン設定とオフライン設定の両方において提案アルゴリズムのサンプル効率が確立される。
実験により、いくつかのベンチマークで現在の最先端アルゴリズムよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-08-19T19:01:30Z) - AntPivot: Livestream Highlight Detection via Hierarchical Attention
Mechanism [64.70568612993416]
本稿では,Livestream Highlight Detectionという新たなタスクを定式化し,上記の課題を議論・分析し,新しいアーキテクチャAntPivotを提案する。
我々は、このタスクをインスタンス化し、我々のモデルの性能を評価するために、完全に注釈付きデータセットAntHighlightを構築した。
論文 参考訳(メタデータ) (2022-06-10T05:58:11Z) - Learnable Multi-level Frequency Decomposition and Hierarchical Attention
Mechanism for Generalized Face Presentation Attack Detection [7.324459578044212]
顔提示攻撃検知(PAD)は多くの注目を集めており、顔認識システムを保護する上で重要な役割を果たしている。
両ストリーム畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
ステップワイドアブレーション研究において提案したPAD法の設計を実証した。
論文 参考訳(メタデータ) (2021-09-16T13:06:43Z) - Focus of Attention Improves Information Transfer in Visual Features [80.22965663534556]
本稿では,真のオンライン環境下での視覚情報伝達のための教師なし学習に焦点を当てた。
エントロピー項の計算は、エントロピー項のオンライン推定を行う時間的プロセスによって行われる。
入力確率分布をよりよく構成するために,人間のような注目モデルを用いる。
論文 参考訳(メタデータ) (2020-06-16T15:07:25Z) - When is Particle Filtering Efficient for Planning in Partially Observed
Linear Dynamical Systems? [60.703816720093016]
本稿では, 逐次計画における粒子フィルタリングの効率性について検討する。
我々は、粒子フィルタリングに基づくポリシーの長期報酬が正確な推測に基づいてそれに近いように、必要な粒子の数に縛り付けることができる。
このテクニックは、他のシーケンシャルな意思決定問題に有効であると考えています。
論文 参考訳(メタデータ) (2020-06-10T17:43:43Z) - Robust Reinforcement Learning with Wasserstein Constraint [49.86490922809473]
最適なロバストなポリシーの存在を示し、摂動に対する感度分析を行い、新しいロバストな学習アルゴリズムを設計する。
提案アルゴリズムの有効性はCart-Pole環境で検証する。
論文 参考訳(メタデータ) (2020-06-01T13:48:59Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
離散的な行動空間における強化学習(RL)は、実世界の応用では至るところで行われているが、その複雑さは行動空間次元とともに指数関数的に増大する。
我々は,行動値関数を推定し,相関行動に適用し,これらの評価値を組み合わせて勾配推定の分散を制御する。
これらの取り組みにより、分散制御技術に頼って、関連するRLアルゴリズムを実証的に上回る、新たな離散的なRLアルゴリズムが実現される。
論文 参考訳(メタデータ) (2020-02-10T04:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。