論文の概要: An overview of differentiable particle filters for data-adaptive
sequential Bayesian inference
- arxiv url: http://arxiv.org/abs/2302.09639v2
- Date: Thu, 14 Dec 2023 11:51:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-16 05:20:18.019758
- Title: An overview of differentiable particle filters for data-adaptive
sequential Bayesian inference
- Title(参考訳): データ適応型シーケンシャルベイズ推論のための微分可能粒子フィルタの概要
- Authors: Xiongjie Chen, Yunpeng Li
- Abstract要約: 粒子フィルタ(PF)は非線形逐次状態推定問題を解くための効率的なメカニズムを提供する。
新たなトレンドは、ニューラルネットワークを使用して粒子フィルタのコンポーネントを構築し、勾配降下によって最適化することである。
微分可能な粒子フィルタは複雑な高次元タスクにおいて逐次データに対する推論を行うための有望な計算ツールである。
- 参考スコア(独自算出の注目度): 19.09640071505051
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By approximating posterior distributions with weighted samples, particle
filters (PFs) provide an efficient mechanism for solving non-linear sequential
state estimation problems. While the effectiveness of particle filters has been
recognised in various applications, their performance relies on the knowledge
of dynamic models and measurement models, as well as the construction of
effective proposal distributions. An emerging trend involves constructing
components of particle filters using neural networks and optimising them by
gradient descent, and such data-adaptive particle filtering approaches are
often called differentiable particle filters. Due to the expressiveness of
neural networks, differentiable particle filters are a promising computational
tool for performing inference on sequential data in complex, high-dimensional
tasks, such as vision-based robot localisation. In this paper, we review recent
advances in differentiable particle filters and their applications. We place
special emphasis on different design choices for key components of
differentiable particle filters, including dynamic models, measurement models,
proposal distributions, optimisation objectives, and differentiable resampling
techniques.
- Abstract(参考訳): 後方分布を重み付きサンプルで近似することにより、粒子フィルタ(PF)は非線形逐次状態推定問題を解くための効率的なメカニズムを提供する。
粒子フィルタの有効性は様々な応用で認識されているが、その性能は動的モデルと計測モデルの知識と効果的な提案分布の構築に依存している。
ニューラルネットを用いたパーティクルフィルタの構成要素の構築と勾配降下による最適化が新たなトレンドとなり、このようなデータ適応型パーティクルフィルタリングアプローチは、しばしば微分可能なパーティクルフィルタと呼ばれる。
ニューラルネットワークの表現性のため、微分可能な粒子フィルタは、視覚に基づくロボットのローカライズのような複雑な高次元タスクにおいて、逐次データに対する推論を行うための有望な計算ツールである。
本稿では, 微分型粒子フィルタの最近の進歩と応用について述べる。
本稿では, 動的モデル, 測定モデル, 提案分布, 最適化目標, 微分可能再サンプリング技術を含む, 微分可能粒子フィルタの主要成分に対する設計選択に特化する。
関連論文リスト
- Learning state and proposal dynamics in state-space models using differentiable particle filters and neural networks [25.103069515802538]
本稿では,ニューラルネットワークを用いて粒子フィルタの提案分布と遷移分布を学習する新しい手法であるStateMixNNを提案する。
本手法は,ログライクリフをターゲットとしてトレーニングされており,観測シリーズのみを必要とする。
提案手法は, 最先端技術と比較して隠れ状態の回復を著しく改善し, 非線形シナリオの改善を図っている。
論文 参考訳(メタデータ) (2024-11-23T19:30:56Z) - Normalising Flow-based Differentiable Particle Filters [19.09640071505051]
本稿では、(条件付き)正規化フローを用いて、その動的モデル、提案分布、測定モデルを構築する、微分可能な粒子フィルタリングフレームワークを提案する。
提案するフィルタの理論的特性を導出し, 一連の数値実験により, フローベース微分可能な粒子フィルタの性能の正規化を評価する。
論文 参考訳(メタデータ) (2024-03-03T12:23:17Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
我々は密度近似と計算効率の面でいくつかの利点を提供するガウスPSDモデルに基づく新しいフィルタのクラスを提案する。
本研究では,遷移や観測がガウスPSDモデルである場合,フィルタリングを効率的にクローズド形式で行うことができることを示す。
提案する推定器は, 近似の精度に依存し, 遷移確率の正則性に適応する推定誤差を伴って, 高い理論的保証を享受する。
論文 参考訳(メタデータ) (2024-02-15T08:51:49Z) - Continuous-time Particle Filtering for Latent Stochastic Differential
Equations [37.51802583388233]
本稿では,粒子フィルタを連続時間領域に拡張した連続潜時粒子フィルタを提案する。
本研究では, 連続潜時粒子フィルタが, 学習した変動後部に依存した推論手法の汎用的なプラグイン代替として利用できることを示す。
論文 参考訳(メタデータ) (2022-09-01T01:05:31Z) - Computational Doob's h-transforms for Online Filtering of Discretely
Observed Diffusions [65.74069050283998]
本研究では,Doobの$h$-transformsを近似する計算フレームワークを提案する。
提案手法は、最先端粒子フィルタよりも桁違いに効率的である。
論文 参考訳(メタデータ) (2022-06-07T15:03:05Z) - Deep Learning for the Benes Filter [91.3755431537592]
本研究では,メッシュのないニューラルネットワークによるベンズモデルの解の密度の表現に基づく新しい数値計算法を提案する。
ニューラルネットワークの領域選択におけるフィルタリングモデル方程式における非線形性の役割について論じる。
論文 参考訳(メタデータ) (2022-03-09T14:08:38Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
ディープラーニングは、リコメンダシステムの結果を改善するために、正確な協調フィルタリングモデルを提供する。
提案するモデルは, 深層建築の潜伏空間において, 変分概念を注入性に適用する。
提案手法は, 入射雑音効果を超える変動エンリッチメントのシナリオにおいて, 提案手法の優位性を示す。
論文 参考訳(メタデータ) (2021-07-27T08:59:39Z) - Differentiable Particle Filters through Conditional Normalizing Flow [6.230706386020833]
微分可能な粒子フィルタは、観測データから学習することで、動的および測定モデルを適応的に訓練する柔軟なメカニズムを提供する。
本稿では, 条件付き正規化フローを用いて, 微分可能な粒子フィルタの提案分布を構築する。
視覚的トラッキングタスクにおけるフローベース微分可能粒子フィルタの条件正規化性能を実演する。
論文 参考訳(メタデータ) (2021-07-01T14:31:27Z) - Innovative And Additive Outlier Robust Kalman Filtering With A Robust
Particle Filter [68.8204255655161]
提案するCE-BASSは, 粒子混合カルマンフィルタであり, 革新的および付加的両方の外れ値に対して堅牢であり, 隠蔽状態の分布における多モード性を完全に捉えることができる。
さらに、CE-BASSは過去の状態を再サンプリングすることで、トレンドの変化のような観測ですぐには見えない革新的な外れ値を扱うことができる。
論文 参考訳(メタデータ) (2020-07-07T07:11:09Z) - When is Particle Filtering Efficient for Planning in Partially Observed
Linear Dynamical Systems? [60.703816720093016]
本稿では, 逐次計画における粒子フィルタリングの効率性について検討する。
我々は、粒子フィルタリングに基づくポリシーの長期報酬が正確な推測に基づいてそれに近いように、必要な粒子の数に縛り付けることができる。
このテクニックは、他のシーケンシャルな意思決定問題に有効であると考えています。
論文 参考訳(メタデータ) (2020-06-10T17:43:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。