論文の概要: Adapting Physics-Informed Neural Networks for Bifurcation Detection in Ecological Migration Models
- arxiv url: http://arxiv.org/abs/2409.00651v1
- Date: Sun, 1 Sep 2024 08:00:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 13:09:07.837173
- Title: Adapting Physics-Informed Neural Networks for Bifurcation Detection in Ecological Migration Models
- Title(参考訳): 生態移動モデルにおける分岐検出のための物理情報ニューラルネットワークの適用
- Authors: Lujie Yin, Xing Lv,
- Abstract要約: 本研究では,生物移動モデルにおける分岐現象の解析への物理情報ニューラルネットワーク(PINN)の適用について検討する。
拡散-回避-反応方程式の基本原理を深層学習技術と組み合わせることで、種移動ダイナミクスの複雑さに対処する。
- 参考スコア(独自算出の注目度): 0.16442870218029523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we explore the application of Physics-Informed Neural Networks (PINNs) to the analysis of bifurcation phenomena in ecological migration models. By integrating the fundamental principles of diffusion-advection-reaction equations with deep learning techniques, we address the complexities of species migration dynamics, particularly focusing on the detection and analysis of Hopf bifurcations. Traditional numerical methods for solving partial differential equations (PDEs) often involve intricate calculations and extensive computational resources, which can be restrictive in high-dimensional problems. In contrast, PINNs offer a more flexible and efficient alternative, bypassing the need for grid discretization and allowing for mesh-free solutions. Our approach leverages the DeepXDE framework, which enhances the computational efficiency and applicability of PINNs in solving high-dimensional PDEs. We validate our results against conventional methods and demonstrate that PINNs not only provide accurate bifurcation predictions but also offer deeper insights into the underlying dynamics of diffusion processes. Despite these advantages, the study also identifies challenges such as the high computational costs and the sensitivity of PINN performance to network architecture and hyperparameter settings. Future work will focus on optimizing these algorithms and expanding their application to other complex systems involving bifurcations. The findings from this research have significant implications for the modeling and analysis of ecological systems, providing a powerful tool for predicting and understanding complex dynamical behaviors.
- Abstract(参考訳): 本研究では,生物移動モデルにおける分岐現象の解析への物理情報ニューラルネットワーク(PINN)の適用について検討する。
拡散-対流-反応方程式の基本原理を深層学習技術と組み合わせることで、種移動力学の複雑さ、特にホップ分岐の検出と解析に焦点を当てる。
偏微分方程式(PDE)を解く従来の数値解法は、複雑な計算と計算資源が伴うことが多く、高次元問題では限定的である。
対照的にPINNは、グリッドの離散化の必要性を回避し、メッシュフリーなソリューションを可能にする、より柔軟で効率的な代替手段を提供する。
提案手法は,高次元PDEの解法におけるPINNの計算効率と適用性を向上するDeepXDEフレームワークを活用する。
本研究は従来の手法に対して検証を行い,PINNが正確な分岐予測を提供するだけでなく,拡散過程の基盤となるダイナミクスに関する深い知見を提供することを示す。
これらの利点にもかかわらず、この研究は高い計算コストやネットワークアーキテクチャやハイパーパラメータ設定に対するPINN性能の感度といった課題も挙げている。
将来的には、これらのアルゴリズムの最適化と、分岐を含む他の複雑なシステムへのアプリケーション拡張に注力する予定である。
本研究から得られた知見は, 生態系のモデリングと解析に重要な意味を持ち, 複雑な動的挙動を予測・理解するための強力なツールを提供する。
関連論文リスト
- Physics-Informed Neural Networks for Electrical Circuit Analysis: Applications in Dielectric Material Modeling [0.0]
物理情報ニューラルネットワーク(PINN)は、物理法則を直接学習プロセスに組み込むことによって、有望なアプローチを提供する。
本稿では、PINNの実装に特化して設計されたDeepXDEフレームワークの機能と制限について説明する。
電流(ln(I))に対数変換を適用することにより,PINN予測の安定性と精度が著しく向上することを示す。
論文 参考訳(メタデータ) (2024-11-13T19:08:36Z) - Deep Learning-based Analysis of Basins of Attraction [49.812879456944984]
本研究は,様々な力学系における盆地の複雑さと予測不可能性を特徴づけることの課題に対処する。
主な焦点は、この分野における畳み込みニューラルネットワーク(CNN)の効率性を示すことである。
論文 参考訳(メタデータ) (2023-09-27T15:41:12Z) - Solving PDEs on Spheres with Physics-Informed Convolutional Neural Networks [17.69666422395703]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法において効率的であることが示されている。
本稿では,物理インフォームド畳み込みニューラルネットワーク(PICNN)の厳密な解析を行い,球面上のPDEを解く。
論文 参考訳(メタデータ) (2023-08-18T14:58:23Z) - Deep Learning-based surrogate models for parametrized PDEs: handling
geometric variability through graph neural networks [0.0]
本研究では,時間依存型PDEシミュレーションにおけるグラフニューラルネットワーク(GNN)の可能性について検討する。
本稿では,データ駆動型タイムステッピング方式に基づくサロゲートモデルを構築するための体系的戦略を提案する。
GNNは,計算効率と新たなシナリオへの一般化の観点から,従来の代理モデルに代わる有効な代替手段を提供することができることを示す。
論文 参考訳(メタデータ) (2023-08-03T08:14:28Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - A Physics Informed Neural Network Approach to Solution and
Identification of Biharmonic Equations of Elasticity [0.0]
本研究では,エアリーストレス関数とフーリエ級数を組み合わせた物理情報ニューラルネットワーク(PINN)の適用について検討する。
両高調波PDEに対するPINNソリューションの精度は, エアリー応力関数による特徴空間の強化により著しく向上することがわかった。
論文 参考訳(メタデータ) (2021-08-16T17:19:50Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - A deep learning framework for solution and discovery in solid mechanics [1.4699455652461721]
本稿では,物理情報ニューラルネットワーク(PINN)と呼ばれるディープラーニングのクラスを,固体力学の学習と発見に応用する。
本稿では, 運動量バランスと弾性の関係をPINNに組み込む方法について解説し, 線形弾性への応用について詳細に検討する。
論文 参考訳(メタデータ) (2020-02-14T08:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。