Non-zero noise extrapolation: accurately simulating noisy quantum circuits with tensor networks
- URL: http://arxiv.org/abs/2501.13237v1
- Date: Wed, 22 Jan 2025 21:42:24 GMT
- Title: Non-zero noise extrapolation: accurately simulating noisy quantum circuits with tensor networks
- Authors: Anthony P. Thompson, Arie Soeteman, Chris Cade, Ido Niesen,
- Abstract summary: We develop and test a method for significantly improving the accuracy of tensor network simulations of noisy quantum circuits.
Our method comes with the advantages that it (i.e. high gate-fidelity) is especially tailored to the low-noise regime.
- Score: 0.5062312533373298
- License:
- Abstract: Understanding the effects of noise on quantum computations is fundamental to the development of quantum hardware and quantum algorithms. Simulation tools are essential for quantitatively modelling these effects, yet unless artificial restrictions are placed on the circuit or noise model, accurately modelling noisy quantum computations is an extremely challenging task due to unfavourable scaling of required computational resources. Tensor network methods offer a viable solution for simulating computations that generate limited entanglement or that have noise models which yield low gate fidelities. However, in the most interesting regime of entangling circuits (with high gate fidelities) relevant for error correction and mitigation tensor network simulations often achieve poor accuracy. In this work we develop and numerically test a method for significantly improving the accuracy of tensor network simulations of noisy quantum circuits in the low-noise (i.e. high gate-fidelity) regime. Our method comes with the advantages that it (i) allows for the simulation of quantum circuits under generic types of noise model, (ii) is especially tailored to the low-noise regime, and (iii) retains the benefits of tensor network scaling, enabling efficient simulations of large numbers of qubits. We build upon the observations that adding extra noise to a quantum circuit makes it easier to simulate with tensor networks, and that the results can later be reliably extrapolated back to the low-noise regime of interest. These observations form the basis for a novel emulation technique that we call non-zero noise extrapolation, in analogy to the quantum error mitigation technique of zero-noise extrapolation.
Related papers
- Efficient learning and optimizing non-Gaussian correlated noise in digitally controlled qubit systems [0.6138671548064356]
We show how to achieve higher-order spectral estimation for noise-optimized circuit design.
Remarkably, we find that the digitally driven qubit dynamics can be solely determined by the complexity of the applied control.
arXiv Detail & Related papers (2025-02-08T02:09:40Z) - Quantum noise modeling through Reinforcement Learning [38.47830254923108]
We introduce a machine learning approach to characterize the noise impacting a quantum chip and emulate it during simulations.
Our algorithm leverages reinforcement learning, offering increased flexibility in reproducing various noise models.
The effectiveness of the RL agent has been validated through simulations and testing on real superconducting qubits.
arXiv Detail & Related papers (2024-08-02T18:05:21Z) - Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation [49.1574468325115]
This study presents the theoretical background and the hardware aware circuit implementation of a quantum tunneling simulation.
We use error mitigation techniques (ZNE and REM) and multiprogramming of the quantum chip for solving the hardware under-utilization problem.
arXiv Detail & Related papers (2024-04-10T14:27:07Z) - Optimized noise-assisted simulation of the Lindblad equation with
time-dependent coefficients on a noisy quantum processor [0.6990493129893112]
Noise can be an asset in digital quantum simulations of open systems on Noisy Intermediate-Scale Quantum (NISQ) devices.
We introduce an optimized decoherence rate control scheme that can significantly reduce computational requirements by multiple orders of magnitude.
arXiv Detail & Related papers (2024-02-12T12:48:03Z) - Accurate and Honest Approximation of Correlated Qubit Noise [39.58317527488534]
We propose an efficient systematic construction of approximate noise channels, where their accuracy can be enhanced by incorporating noise components with higher qubit-qubit correlation degree.
We find that, for realistic noise strength typical for fixed-frequency superconducting qubits, correlated noise beyond two-qubit correlation can significantly affect the code simulation accuracy.
arXiv Detail & Related papers (2023-11-15T19:00:34Z) - Matrix product channel: Variationally optimized quantum tensor network
to mitigate noise and reduce errors for the variational quantum eigensolver [0.0]
We develop a method to exploit the quantum-classical interface provided by informationally complete measurements.
We argue that a hybrid strategy of using the quantum hardware together with the classical software outperforms a purely classical strategy.
The algorithm can be applied as the final postprocessing step in the quantum hardware simulation of protein-ligand complexes in the context of drug design.
arXiv Detail & Related papers (2022-12-20T13:03:48Z) - Approximation Algorithm for Noisy Quantum Circuit Simulation [3.55689240295244]
This paper introduces a novel approximation algorithm for simulating noisy quantum circuits.
Our method offers a speedup over the commonly-used approximation (sampling) algorithm -- quantum trajectories method.
arXiv Detail & Related papers (2022-11-30T14:20:22Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.