Optimized noise-assisted simulation of the Lindblad equation with
time-dependent coefficients on a noisy quantum processor
- URL: http://arxiv.org/abs/2402.07617v1
- Date: Mon, 12 Feb 2024 12:48:03 GMT
- Title: Optimized noise-assisted simulation of the Lindblad equation with
time-dependent coefficients on a noisy quantum processor
- Authors: Jos\'e D. Guimar\~aes, Antonio Ruiz-Molero, James Lim, Mikhail I.
Vasilevskiy, Susana F. Huelga and Martin B. Plenio
- Abstract summary: Noise can be an asset in digital quantum simulations of open systems on Noisy Intermediate-Scale Quantum (NISQ) devices.
We introduce an optimized decoherence rate control scheme that can significantly reduce computational requirements by multiple orders of magnitude.
- Score: 0.6990493129893112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Noise in quantum devices is generally considered detrimental to computational
accuracy. However, the recent proposal of noise-assisted simulation has
demonstrated that noise can be an asset in digital quantum simulations of open
systems on Noisy Intermediate-Scale Quantum (NISQ) devices. In this context, we
introduce an optimized decoherence rate control scheme that can significantly
reduce computational requirements by multiple orders of magnitude, in
comparison to the original noise-assisted simulation. We further extend this
approach to encompass Lindblad equations with time-dependent coefficients,
using only quantum error characterization and mitigation techniques. This
extension allows for the perturbative simulation of non-Markovian dynamics on
NISQ devices, eliminating the need for ancilla qubits or mid-circuit
measurements. Our contributions are validated through numerical experiments on
an emulated IBMQ device. Overall, our work offers valuable optimizations that
bring current quantum processors closer to effectively simulating realistic
open systems.
Related papers
- Compact quantum algorithms for time-dependent differential equations [0.0]
We build on an idea based on linear combination of unitaries to simulate non-unitary, non-Hermitian quantum systems.
We generate hybrid quantum-classical algorithms that efficiently perform iterative matrix-vector multiplication and matrix inversion operations.
arXiv Detail & Related papers (2024-05-16T02:14:58Z) - Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation [49.1574468325115]
This study presents the theoretical background and the hardware aware circuit implementation of a quantum tunneling simulation.
We use error mitigation techniques (ZNE and REM) and multiprogramming of the quantum chip for solving the hardware under-utilization problem.
arXiv Detail & Related papers (2024-04-10T14:27:07Z) - Classical simulations of noisy variational quantum circuits [0.0]
Noisely affects quantum computations so that they not only become less accurate but also easier to simulate classically as systems scale up.
We construct a classical simulation algorithm, LOWESA, for estimating expectation values of noisy parameterised quantum circuits.
arXiv Detail & Related papers (2023-06-08T17:52:30Z) - Noise-assisted digital quantum simulation of open systems [1.3124513975412255]
We present a novel approach that capitalizes on the intrinsic noise of quantum devices to reduce the computational resources required for simulating open quantum systems.
Specifically, we selectively enhance or reduce decoherence rates in the quantum circuit to achieve the desired simulation of open system dynamics.
arXiv Detail & Related papers (2023-02-28T14:21:43Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Efficient classical simulation and benchmarking of quantum processes in
the Weyl basis [0.0]
We develop a randomized benchmarking algorithm which uses Weyl unitaries to efficiently identify and learn a mixture of error models.
We apply our methods to ansatz circuits that appear in the Variational Quantum Eigensolver.
arXiv Detail & Related papers (2020-08-27T16:46:12Z) - Mitigating realistic noise in practical noisy intermediate-scale quantum
devices [0.5872014229110214]
Quantum error mitigation (QEM) is vital for noisy intermediate-scale quantum (NISQ) devices.
Most conventional QEM schemes assume discrete gate-based circuits with noise appearing either before or after each gate.
We show it can be effectively suppressed by a novel QEM method.
arXiv Detail & Related papers (2020-01-14T16:51:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.