Native Three-Body Interactions in a Superconducting Lattice Gauge Quantum Simulator
- URL: http://arxiv.org/abs/2501.13383v1
- Date: Thu, 23 Jan 2025 04:58:39 GMT
- Title: Native Three-Body Interactions in a Superconducting Lattice Gauge Quantum Simulator
- Authors: J. H. Busnaina, Z. Shi, Jesús M. Alcaine-Cuervo, Cindy X. Yang, I. Nsanzineza, E. Rico, C. M. Wilson,
- Abstract summary: lattice gauge theories (LGTs) are nonperturbative tools, utilizing discretized spacetime to describe gauge-invariant models.
LGTs hold immense potential for understanding fundamental physics but require enforcing local constraints analogous to electromagnetism's Gauss's Law.
We propose and implement a novel parametrically activated three-qubit interaction within a circuit quantum electrodynamics architecture.
- Score: 0.0
- License:
- Abstract: While universal quantum computers remain under development, analog quantum simulators offer a powerful alternative for understanding complex systems in condensed matter, chemistry, and high-energy physics. One compelling application is the characterization of real-time lattice gauge theories (LGTs). LGTs are nonperturbative tools, utilizing discretized spacetime to describe gauge-invariant models. They hold immense potential for understanding fundamental physics but require enforcing local constraints analogous to electromagnetism's Gauss's Law. These constraints, which arise from gauge symmetries and dictate the form of the interaction between matter and gauge fields, are a significant challenge for simulators to enforce. Implementing these constraints at the hardware level in analog simulations is crucial. This requires realizing multibody interactions between matter and gauge-field elements, enabling them to evolve together while suppressing unwanted two-body interactions that violate the gauge symmetry. In this paper, we propose and implement a novel parametrically activated three-qubit interaction within a circuit quantum electrodynamics architecture. We experimentally demonstrate a minimal $U(1)$ spin-1/2 model with a time evolution that intrinsically satisfies Gauss's law in the system. This design serves as the foundational block for simulating LGTs on a superconducting photonic lattice.
Related papers
- Simulating Schwinger model dynamics with quasi-one-dimensional qubit arrays [0.0]
We develop a strategy to run Schwinger model dynamics on synthetic quantum spin lattices.
We show that global magnetic field patterns can drive coherent quantum dynamics of the interface equivalent to the lattice Schwinger Hamiltonian.
This work opens up a path for near-term quantum simulators to address questions of immediate relevance to particle physics.
arXiv Detail & Related papers (2024-09-22T17:58:25Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Spin-$S$ $\mathrm{U}(1)$ Quantum Link Models with Dynamical Matter on a
Quantum Simulator [3.1192594881563127]
We present a bosonic mapping for the representation of gauge and electric fields with effective spin-$S$ operators.
We then propose an experimental scheme for the realization of a large-scale spin-$1$ $mathrmU(1)$ QLM using spinless bosons in an optical superlattice.
arXiv Detail & Related papers (2023-05-10T18:00:01Z) - Fermion-qudit quantum processors for simulating lattice gauge theories
with matter [0.0]
We present a complete Rydberg-based architecture, co-designed to digitally simulate the dynamics of general gauge theories.
We show how to prepare hadrons made up of fermionic matter constituents bound by non-abelian gauge fields.
In both cases, we estimate the required resources, showing how quantum devices can be used to calculate experimentally-relevant quantities.
arXiv Detail & Related papers (2023-03-15T15:12:26Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Probing confinement in a $\mathbb{Z}_2$ lattice gauge theory on a
quantum computer [0.0]
lattice gauge theories govern charged matter and the electric gauge field.
Here, we simulate confinement dynamics in a $mathbbZ$ LGT on a superconducting quantum chip.
We find that tuning a term that couples only to the electric field confines the charges, a manifestation of the tight bond that the local gauge constraint generates between both.
arXiv Detail & Related papers (2022-03-16T19:38:17Z) - Spin many-body phases in standard and topological waveguide QED
simulators [68.8204255655161]
We study the many-body behaviour of quantum spin models using waveguide QED setups.
We find novel many-body phases different from the ones obtained in other platforms.
arXiv Detail & Related papers (2021-06-22T09:44:20Z) - Quantum Simulation of the Bosonic Creutz Ladder with a Parametric Cavity [5.336258422653554]
We use a multimode superconducting parametric cavity as a hardware-efficient analog quantum simulator.
We realize a lattice in synthetic dimensions with complex hopping interactions.
The complex-valued hopping interaction further allows us to simulate, for instance, gauge potentials and topological models.
arXiv Detail & Related papers (2021-01-11T14:46:39Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.