論文の概要: Fast and Provable Tensor-Train Format Tensor Completion via Precondtioned Riemannian Gradient Descent
- arxiv url: http://arxiv.org/abs/2501.13385v1
- Date: Thu, 23 Jan 2025 05:03:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:55:03.682344
- Title: Fast and Provable Tensor-Train Format Tensor Completion via Precondtioned Riemannian Gradient Descent
- Title(参考訳): プレコンディション付きリーマン勾配発振による高速かつ予測可能なテンソル・トレイン整形術
- Authors: Fengmiao Bian, Jian-Feng Cai, Xiaoqun Zhang, Yuanwei Zhang,
- Abstract要約: 本稿では, テンソルトレイン(TT)フォーマットに基づく低ランクテンソル完成問題について検討する。
本稿では,TTランクの低いテンソル補完を解き,その線形収束を確立するために,事前条件付き勾配降下アルゴリズム(PRGD)を提案する。
ハイパースペクトル画像補完や量子状態トモグラフィなどの実用的な応用では、PRGDアルゴリズムは繰り返し回数を大幅に削減し、計算時間を劇的に短縮する。
- 参考スコア(独自算出の注目度): 4.376623639964006
- License:
- Abstract: Low-rank tensor completion aims to recover a tensor from partially observed entries, and it is widely applicable in fields such as quantum computing and image processing. Due to the significant advantages of the tensor train (TT) format in handling structured high-order tensors, this paper investigates the low-rank tensor completion problem based on the TT-format. We proposed a preconditioned Riemannian gradient descent algorithm (PRGD) to solve low TT-rank tensor completion and establish its linear convergence. Experimental results on both simulated and real datasets demonstrate the effectiveness of the PRGD algorithm. On the simulated dataset, the PRGD algorithm reduced the computation time by two orders of magnitude compared to existing classical algorithms. In practical applications such as hyperspectral image completion and quantum state tomography, the PRGD algorithm significantly reduced the number of iterations, thereby substantially reducing the computational time.
- Abstract(参考訳): 低ランクテンソル補完は、部分的に観察されたエントリからテンソルを復元することを目的としており、量子コンピューティングや画像処理などの分野で広く適用されている。
構造付き高次テンソルを扱う場合のテンソルトレイン(TT)フォーマットの顕著な利点から,TT形式に基づく低ランクテンソルコンプリート問題について検討する。
我々は、TTランクの低いテンソル完備化を解消し、その線形収束を確立するために、事前条件付きリーマン勾配降下アルゴリズム(PRGD)を提案した。
シミュレーションと実データの両方の実験結果から,PRGDアルゴリズムの有効性が示された。
シミュレーションデータセットでは、PRGDアルゴリズムは従来のアルゴリズムと比較して計算時間を2桁削減した。
ハイパースペクトル画像補完や量子状態トモグラフィなどの実用的な応用では、PRGDアルゴリズムは繰り返し回数を大幅に削減し、計算時間を劇的に短縮する。
関連論文リスト
- Computational and Statistical Guarantees for Tensor-on-Tensor Regression with Tensor Train Decomposition [27.29463801531576]
TTに基づくToT回帰モデルの理論的およびアルゴリズム的側面について検討する。
制約付き誤差境界に対する解を効率的に見つけるための2つのアルゴリズムを提案する。
我々はIHTとRGDの両方の線形収束速度を確立する。
論文 参考訳(メタデータ) (2024-06-10T03:51:38Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - Towards Memory- and Time-Efficient Backpropagation for Training Spiking
Neural Networks [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックコンピューティングのためのエネルギー効率の高いモデルである。
本研究では,学習効率を大幅に向上させつつ,高い性能を達成できる空間学習時間(SLTT)法を提案する。
BPTTと比較して, メモリコストとトレーニング時間は, それぞれ70%以上, 50%以上削減されている。
論文 参考訳(メタデータ) (2023-02-28T05:01:01Z) - Latent Matrices for Tensor Network Decomposition and to Tensor
Completion [8.301418317685906]
テンソルを小さく分解し,アルゴリズムの計算を高速化する新しい高階テンソル分解モデルを提案する。
LMTN-PAM, LMTN-SVD, LMTN-ARの3つの最適化アルゴリズムを開発し, テンソル補完タスクに適用した。
実験の結果, LMTN-SVDアルゴリズムはFCTN-PAMアルゴリズムの3~6倍高速であり, 1.8ポイントの精度低下しか得られなかった。
論文 参考訳(メタデータ) (2022-10-07T08:19:50Z) - Softmax-free Linear Transformers [90.83157268265654]
視覚変換器(ViT)は、視覚知覚タスクの最先端を推し進めている。
既存の手法は理論的に欠陥があるか、視覚認識に経験的に効果がないかのいずれかである。
我々はSoftmax-Free Transformers (SOFT) のファミリーを提案する。
論文 参考訳(メタデータ) (2022-07-05T03:08:27Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
本研究は, モード駆動繊維による3症例の欠失を含む, 4症例の欠失パターンについて紹介する。
本モデルでは, 目的関数の非性にもかかわらず, 乗算器の交互データ演算法を統合することにより, 最適解を導出する。
論文 参考訳(メタデータ) (2022-05-19T08:37:56Z) - Random-reshuffled SARAH does not need a full gradient computations [61.85897464405715]
StochAstic Recursive grAdientritHm (SARAH)アルゴリズムは、Gradient Descent (SGD)アルゴリズムのばらつき低減版である。
本稿では,完全勾配の必要性を除去する。
集約された勾配は、SARAHアルゴリズムの完全な勾配の見積もりとなる。
論文 参考訳(メタデータ) (2021-11-26T06:00:44Z) - Provable Tensor-Train Format Tensor Completion by Riemannian
Optimization [22.166436026482984]
TT形式テンソル完備化のためのRGradアルゴリズムの収束に関する最初の理論的保証を提供する。
また, 逐次2次モーメント法(Sequence second-order moment method)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-08-27T08:13:58Z) - New Riemannian preconditioned algorithms for tensor completion via
polyadic decomposition [10.620193291237262]
これらのアルゴリズムは、ポリアジック分解形態におけるローランクテンソルの因子行列の積空間上の非ユークリッド計量を利用する。
提案された勾配降下アルゴリズムがテンソル完備問題の定常点にグローバルに収束することを証明する。
合成データと実世界のデータの数値計算結果から,提案アルゴリズムは最先端アルゴリズムよりもメモリと時間において効率的であることが示唆された。
論文 参考訳(メタデータ) (2021-01-26T22:11:06Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
本稿では,各ステップごとに1つのデータポイントしか必要としない2つの単一スケールシングルループアルゴリズムを提案する。
本研究の結果は, 同時一次および二重側収束の形で表される。
論文 参考訳(メタデータ) (2020-08-23T20:36:49Z) - Grassmannian Optimization for Online Tensor Completion and Tracking with
the t-SVD [10.137631021498109]
t-SVD は三次テンソルに対するよく研究されたブロック項分解の特殊化であることを示す。
非完全ストリーミング2次元データから自由部分加群の変化を追跡するアルゴリズムを提案する。
提案手法は精度は高いが, 実アプリケーション上での最先端のテンソル補完アルゴリズムよりも計算時間の方がはるかに高速である。
論文 参考訳(メタデータ) (2020-01-30T15:56:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。