論文の概要: VulnBot: Autonomous Penetration Testing for A Multi-Agent Collaborative Framework
- arxiv url: http://arxiv.org/abs/2501.13411v1
- Date: Thu, 23 Jan 2025 06:33:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:58:56.861830
- Title: VulnBot: Autonomous Penetration Testing for A Multi-Agent Collaborative Framework
- Title(参考訳): VulnBot: マルチエージェントコラボレーションフレームワークのための自動浸透テスト
- Authors: He Kong, Die Hu, Jingguo Ge, Liangxiong Li, Tong Li, Bingzhen Wu,
- Abstract要約: 既存の大規模言語モデル(LLM)を支援または自動化した浸透テストアプローチは、しばしば非効率に悩まされる。
VulnBotは複雑なタスクを、偵察、スキャン、エクスプロイトという3つの特別なフェーズに分割する。
主なデザインの特徴は、役割の専門化、侵入経路計画、エージェント間コミュニケーション、生成的侵入行動である。
- 参考スコア(独自算出の注目度): 4.802551205178858
- License:
- Abstract: Penetration testing is a vital practice for identifying and mitigating vulnerabilities in cybersecurity systems, but its manual execution is labor-intensive and time-consuming. Existing large language model (LLM)-assisted or automated penetration testing approaches often suffer from inefficiencies, such as a lack of contextual understanding and excessive, unstructured data generation. This paper presents VulnBot, an automated penetration testing framework that leverages LLMs to simulate the collaborative workflow of human penetration testing teams through a multi-agent system. To address the inefficiencies and reliance on manual intervention in traditional penetration testing methods, VulnBot decomposes complex tasks into three specialized phases: reconnaissance, scanning, and exploitation. These phases are guided by a penetration task graph (PTG) to ensure logical task execution. Key design features include role specialization, penetration path planning, inter-agent communication, and generative penetration behavior. Experimental results demonstrate that VulnBot outperforms baseline models such as GPT-4 and Llama3 in automated penetration testing tasks, particularly showcasing its potential in fully autonomous testing on real-world machines.
- Abstract(参考訳): 侵入テストは、サイバーセキュリティシステムの脆弱性を特定し、緩和するための重要なプラクティスであるが、手作業による実行は労働集約的で時間を要する。
既存の大規模言語モデル(LLM)を利用した自動浸透テスト手法は、文脈理解の欠如や過度に構造化されていないデータ生成などの非効率性に悩まされることが多い。
本稿では,LLMを活用した自動貫入テストフレームワークであるVulnBotを紹介し,マルチエージェントシステムによる人間の貫入テストチームの協調ワークフローをシミュレーションする。
従来の浸透試験手法における手動介入の非効率性と信頼性に対処するため、VulnBotは複雑なタスクを3つの特別なフェーズ(偵察、スキャン、利用)に分割する。
これらのフェーズは、論理的タスク実行を保証するために、侵入タスクグラフ(PTG)によってガイドされる。
主なデザインの特徴は、役割の専門化、侵入経路計画、エージェント間コミュニケーション、生成的侵入行動である。
実験の結果、VulnBotはGPT-4やLlama3のようなベースラインモデルよりも、特に実世界のマシンで完全に自律的なテストを行う可能性を示している。
関連論文リスト
- PentestAgent: Incorporating LLM Agents to Automated Penetration Testing [6.815381197173165]
手動浸透試験は時間と費用がかかる。
大規模言語モデル(LLM)の最近の進歩は、浸透テストを強化する新たな機会を提供する。
我々は,新しいLLMベースの自動浸透試験フレームワークであるPentestAgentを提案する。
論文 参考訳(メタデータ) (2024-11-07T21:10:39Z) - AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
LLMによって駆動されるPSMの原理に基づく自動浸透試験エージェントであるAutoPTを紹介する。
以上の結果から, AutoPT は GPT-4o ミニモデル上でのベースラインフレームワーク ReAct よりも優れていた。
論文 参考訳(メタデータ) (2024-11-02T13:24:30Z) - CIPHER: Cybersecurity Intelligent Penetration-testing Helper for Ethical Researcher [1.6652242654250329]
本研究は,Cybersecurity Intelligent Peretration-testing Helper for Ethical researchers (CIPHER)を開発した。
私たちは、脆弱なマシンの300以上の高品質な書き込み、ハッキングテクニック、オープンソースの侵入テストツールのドキュメントを使用してCIPHERをトレーニングしました。
本研究では,完全自動ペンテスティング・シミュレーション・ベンチマークを確立するために,書込みテストの拡張手法であるFinderings, Action, Reasoning, Results (FARR) Flow Augmentationを紹介する。
論文 参考訳(メタデータ) (2024-08-21T14:24:04Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
本稿では,タスク自動化の体系的アプローチである計算管理を紹介する。
この記事では、ワークフロー内でAIを実装するプロセスを開始するための、ステップバイステップの手順を3つ紹介する。
論文 参考訳(メタデータ) (2024-02-07T01:45:14Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - ProAgent: From Robotic Process Automation to Agentic Process Automation [87.0555252338361]
LLM(Large Language Models)は、人間のような知性を持つ言語である。
本稿では,ALMをベースとしたエージェントを用いた高度な自動化のための基盤的自動化パラダイムであるエージェントプロセス自動化(APA)を紹介する。
そして、人間の指示を駆使し、特殊エージェントの調整によって複雑な決定を下すように設計されたエージェントであるProAgentをインスタンス化する。
論文 参考訳(メタデータ) (2023-11-02T14:32:16Z) - PentestGPT: An LLM-empowered Automatic Penetration Testing Tool [20.449761406790415]
大規模言語モデル(LLM)は、様々な領域において大きな進歩を見せている。
実世界の浸透試験におけるLLMの性能を,プラットフォームを用いたテストマシンから作成した頑健なベンチマークを用いて評価した。
LLMを利用した自動浸透試験ツールであるPentestGPTを紹介する。
論文 参考訳(メタデータ) (2023-08-13T14:35:50Z) - Getting pwn'd by AI: Penetration Testing with Large Language Models [0.0]
本稿では,GPT3.5のような大規模言語モデルによるAIスパーリングパートナーによる浸透テストの強化の可能性について検討する。
セキュリティテストの課題のためのハイレベルなタスクプランニングと、脆弱な仮想マシン内での低レベルな脆弱性ハンティングである。
論文 参考訳(メタデータ) (2023-07-24T19:59:22Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Demonstration-Guided Reinforcement Learning with Efficient Exploration
for Task Automation of Surgical Robot [54.80144694888735]
効率的な強化学習アルゴリズムであるDEX(Demonstration-Guided Exploration)を導入する。
本手法は,生産的相互作用を促進するために,高い値で専門家のような行動を推定する。
総合的な手術シミュレーションプラットフォームであるSurRoLによる10ドルの手術操作に関する実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-02-20T05:38:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。