論文の概要: LVPruning: An Effective yet Simple Language-Guided Vision Token Pruning Approach for Multi-modal Large Language Models
- arxiv url: http://arxiv.org/abs/2501.13652v1
- Date: Thu, 23 Jan 2025 13:31:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:58:27.947186
- Title: LVPruning: An Effective yet Simple Language-Guided Vision Token Pruning Approach for Multi-modal Large Language Models
- Title(参考訳): LVPruning: マルチモーダル大規模言語モデルに対する効果的な、かつシンプルな言語誘導型視覚整形法
- Authors: Yizheng Sun, Yanze Xin, Hao Li, Jingyuan Sun, Chenghua Lin, Riza Batista-Navarro,
- Abstract要約: MLLMのためのLVP(Language-Guided Vision Token Pruning)を提案する。
LVPruningは、言語トークンとの相互作用に基づいて視覚トークンの重要性を計算するために、クロスアテンションモジュールを使用している。
実験により、LLaVA-1.5の中間層によって、LVPruningは視覚トークンの90%を効果的に削減できることが示された。
- 参考スコア(独自算出の注目度): 18.489240454283834
- License:
- Abstract: Multi-modal Large Language Models (MLLMs) have achieved remarkable success by integrating visual and textual modalities. However, they incur significant computational overhead due to the large number of vision tokens processed, limiting their practicality in resource-constrained environments. We introduce Language-Guided Vision Token Pruning (LVPruning) for MLLMs, an effective yet simple method that significantly reduces the computational burden while preserving model performance. LVPruning employs cross-attention modules to compute the importance of vision tokens based on their interaction with language tokens, determining which to prune. Importantly, LVPruning can be integrated without modifying the original MLLM parameters, which makes LVPruning simple to apply or remove. Our experiments show that LVPruning can effectively reduce up to 90% of vision tokens by the middle layer of LLaVA-1.5, resulting in a 62.1% decrease in inference Tera Floating-Point Operations Per Second (TFLOPs), with an average performance loss of just 0.45% across nine multi-modal benchmarks.
- Abstract(参考訳): MLLM(Multi-modal Large Language Models)は、視覚とテキストのモダリティを統合することで大きな成功を収めた。
しかし、多くの視覚トークンが処理され、リソース制約のある環境での実用性が制限されるため、計算オーバーヘッドが大幅に増大する。
モデル性能を維持しながら計算負担を大幅に軽減する,効果的かつ簡便な手法であるMLLMに対するLVPruning(Language-Guided Vision Token Pruning)を導入する。
LVPruningは、言語トークンとの相互作用に基づいて視覚トークンの重要性を計算し、どのプルーを行うかを決定するために、クロスアテンションモジュールを使用している。
重要なことに、LVPruningはオリジナルのMLLMパラメータを変更することなく統合できるため、LVPruningの適用や削除が簡単になる。
LLaVA-1.5の中間層では,LVPruningは視覚トークンの90%を効果的に削減できることを示す。その結果,TFLOP(Terra Floating-Point Operations Per Second)は62.1%減少し,9つのマルチモーダルベンチマークで平均性能損失は0.45%に留まった。
関連論文リスト
- Mini-InternVL: A Flexible-Transfer Pocket Multimodal Model with 5% Parameters and 90% Performance [78.48606021719206]
Mini-InternVL は 1B から 4B までのパラメータを持つ一連の MLLM であり、パラメータの 5% しか持たない性能の90% を達成している。
我々は,ダウンストリームタスクにおける特化モデルの転送と性能向上を可能にする,Mini-InternVLの統一適応フレームワークを開発した。
論文 参考訳(メタデータ) (2024-10-21T17:58:20Z) - LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
本稿では,l-MLLMからs-MLLMへ知識を伝達する新しいフレームワークを提案する。
具体的には,l-MLLMとs-MLLMの視覚的テキスト出力分布のばらつきを最小限に抑えるために,MDist(Multimodal Distillation)を導入する。
また,S-MLLMの可能性を完全に活用するための3段階学習手法を提案する。
論文 参考訳(メタデータ) (2024-10-21T17:41:28Z) - Mono-InternVL: Pushing the Boundaries of Monolithic Multimodal Large Language Models with Endogenous Visual Pre-training [48.455597568212944]
マルチモーダル・ミックス・オブ・エキスパート構造を用いて視覚専門家の集合をシームレスに統合するモノリシックMLLMであるMono-InternVLを提案する。
特に、EViPは、ノイズの多いデータから高品質なデータへの視覚的知識を完全に活用することを目的とした、視覚専門家のための進歩的な学習プロセスとして設計されている。
論文 参考訳(メタデータ) (2024-10-10T17:59:22Z) - Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See [37.7015406019386]
MLLM(Multimodal Large Language Models)は、視覚エンコーダからの視覚トークンをテキストトークンとして扱う。
トークンの数が増加するにつれて、LLMにおける計算の2次スケーリングは効率のボトルネックをもたらす。
本研究では,LLaVAにおけるパラメータと計算パターンの両レベルでの視覚計算の冗長性について検討する。
論文 参考訳(メタデータ) (2024-10-08T16:13:24Z) - EE-MLLM: A Data-Efficient and Compute-Efficient Multimodal Large Language Model [14.767055057048855]
データ効率・計算効率・マルチモーダル大言語モデル(EE-MLLM)について紹介する。
EE-MLLMは、追加モジュールや学習可能なパラメータを導入することなく、データと計算効率の両方を達成する。
実験により,EE-MLLMのベンチマークにおける有効性を示した。
論文 参考訳(メタデータ) (2024-08-21T17:36:37Z) - Advancing Multimodal Large Language Models with Quantization-Aware Scale Learning for Efficient Adaptation [70.22782550540714]
QSLAWと呼ばれるマルチモーダルワームアップに基づく量子化対応スケールルアーニング法
本稿では、QSLAWと呼ばれるマルチモーダルワームアップに基づく量子化対応スケールLeArning手法を提案する。
論文 参考訳(メタデータ) (2024-08-07T12:42:09Z) - Machine Vision Therapy: Multimodal Large Language Models Can Enhance Visual Robustness via Denoising In-Context Learning [67.0609518552321]
本稿では,視覚モデルからノイズ予測を補正するマシンビジョンセラピーを提案する。
復調ラベルを微調整することにより、教師なしの方法で学習モデルの性能を高めることができる。
論文 参考訳(メタデータ) (2023-12-05T07:29:14Z) - EfficientVLM: Fast and Accurate Vision-Language Models via Knowledge
Distillation and Modal-adaptive Pruning [19.354515754130592]
我々は,大規模な視覚言語モデルをより小さく,より速く,より正確なものに圧縮する蒸留精錬フレームワークを導入する。
EfficientVLMは、6つの視覚層、3つのテキスト層、3つのモーダル融合層からなる高速かつ正確な視覚言語モデルである。
効率的なVLMは、教師モデルの98.4%のパフォーマンスを維持し、推論速度を2.2倍に加速する。
論文 参考訳(メタデータ) (2022-10-14T13:26:41Z) - Enabling Multimodal Generation on CLIP via Vision-Language Knowledge
Distillation [79.72299298976525]
我々は、視覚言語知識蒸留(VLKD)を通して、テキスト事前学習言語モデル(PLM)を用いた視覚言語事前学習モデルの拡張を提案する。
実験の結果,複数モーダル生成タスクにおいて,視覚的質問応答や画像キャプションなどのゼロショット性能が強いことがわかった。
PLMの本来のテキスト言語理解と生成能力は、VLKDの後に維持される。
論文 参考訳(メタデータ) (2022-03-12T09:33:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。