Scalable Safe Multi-Agent Reinforcement Learning for Multi-Agent System
- URL: http://arxiv.org/abs/2501.13727v1
- Date: Thu, 23 Jan 2025 15:01:19 GMT
- Title: Scalable Safe Multi-Agent Reinforcement Learning for Multi-Agent System
- Authors: Haikuo Du, Fandi Gou, Yunze Cai,
- Abstract summary: Existing Multi-Agent Reinforcement Learning (MARL) algorithms that rely solely on reward shaping are ineffective in ensuring safety.
We propose a novel framework, Scalable Safe MARL (SS-MARL), to enhance the safety and scalability of MARL methods.
We show that SS-MARL achieves a better trade-off between optimality and safety compared to baselines, and its scalability significantly outperforms the latest methods in scenarios with a large number of agents.
- Score: 1.0124625066746598
- License:
- Abstract: Safety and scalability are two critical challenges faced by practical Multi-Agent Systems (MAS). However, existing Multi-Agent Reinforcement Learning (MARL) algorithms that rely solely on reward shaping are ineffective in ensuring safety, and their scalability is rather limited due to the fixed-size network output. To address these issues, we propose a novel framework, Scalable Safe MARL (SS-MARL), to enhance the safety and scalability of MARL methods. Leveraging the inherent graph structure of MAS, we design a multi-layer message passing network to aggregate local observations and communications of varying sizes. Furthermore, we develop a constrained joint policy optimization method in the setting of local observation to improve safety. Simulation experiments demonstrate that SS-MARL achieves a better trade-off between optimality and safety compared to baselines, and its scalability significantly outperforms the latest methods in scenarios with a large number of agents. The feasibility of our method is also verified by hardware implementation with Mecanum-wheeled vehicles.
Related papers
- Safe Multi-Agent Reinforcement Learning with Convergence to Generalized Nash Equilibrium [6.169364905804677]
Multi-agent reinforcement learning (MARL) has achieved notable success in cooperative tasks.
deploying MARL agents in real-world applications presents critical safety challenges.
We propose a novel theoretical framework for safe MARL with $textitstate-wise$ constraints, where safety requirements are enforced at every state the agents visit.
For practical deployment in complex high-dimensional systems, we propose $textitMulti-Agent Dual Actor-Critic$ (MADAC)
arXiv Detail & Related papers (2024-11-22T16:08:42Z) - SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
We propose toolns, a comprehensive framework designed for conducting safety evaluations of MLLMs.
Our framework consists of a comprehensive harmful query dataset and an automated evaluation protocol.
Based on our framework, we conducted large-scale experiments on 15 widely-used open-source MLLMs and 6 commercial MLLMs.
arXiv Detail & Related papers (2024-10-24T17:14:40Z) - Diffusion Models for Offline Multi-agent Reinforcement Learning with Safety Constraints [0.0]
We introduce an innovative framework integrating diffusion models within the Multi-agent Reinforcement Learning paradigm.
This approach notably enhances the safety of actions taken by multiple agents through risk mitigation while modeling coordinated action.
arXiv Detail & Related papers (2024-06-30T16:05:31Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
Current mitigation strategies, while effective, are not resilient under adversarial attacks.
This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently moderate harmful and unsafe inputs.
arXiv Detail & Related papers (2024-03-19T07:25:02Z) - DeepSafeMPC: Deep Learning-Based Model Predictive Control for Safe
Multi-Agent Reinforcement Learning [11.407941376728258]
We propose a novel method called Deep Learning-Based Model Predictive Control for Safe Multi-Agent Reinforcement Learning (DeepSafeMPC)
The key insight of DeepSafeMPC is leveraging a entralized deep learning model to well predict environmental dynamics.
We demonstrate the effectiveness of our approach using the Safe Multi-agent MuJoCo environment.
arXiv Detail & Related papers (2024-03-11T03:17:33Z) - Safe Model-Based Multi-Agent Mean-Field Reinforcement Learning [48.667697255912614]
Mean-field reinforcement learning addresses the policy of a representative agent interacting with the infinite population of identical agents.
We propose Safe-M$3$-UCRL, the first model-based mean-field reinforcement learning algorithm that attains safe policies even in the case of unknown transitions.
Our algorithm effectively meets the demand in critical areas while ensuring service accessibility in regions with low demand.
arXiv Detail & Related papers (2023-06-29T15:57:07Z) - Model-based Dynamic Shielding for Safe and Efficient Multi-Agent
Reinforcement Learning [7.103977648997475]
Multi-Agent Reinforcement Learning (MARL) discovers policies that maximize reward but do not have safety guarantees during the learning and deployment phases.
Model-based Dynamic Shielding (MBDS) to support MARL algorithm design.
arXiv Detail & Related papers (2023-04-13T06:08:10Z) - Multi-Agent Constrained Policy Optimisation [17.772811770726296]
We formulate the safe MARL problem as a constrained Markov game and solve it with policy optimisation methods.
Our solutions -- Multi-Agent Constrained Policy optimisation (MACPO) and MAPPO-Lagrangian -- leverage the theories from both constrained policy optimisation and multi-agent trust region learning.
We develop the benchmark suite of Safe Multi-Agent MuJoCo that involves a variety of MARL baselines.
arXiv Detail & Related papers (2021-10-06T14:17:09Z) - Locality Matters: A Scalable Value Decomposition Approach for
Cooperative Multi-Agent Reinforcement Learning [52.7873574425376]
Cooperative multi-agent reinforcement learning (MARL) faces significant scalability issues due to state and action spaces that are exponentially large in the number of agents.
We propose a novel, value-based multi-agent algorithm called LOMAQ, which incorporates local rewards in the Training Decentralized Execution paradigm.
arXiv Detail & Related papers (2021-09-22T10:08:15Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
Open-world deployment of Machine Learning algorithms in safety-critical applications such as autonomous vehicles needs to address a variety of ML vulnerabilities.
New models and training techniques to reduce generalization error, achieve domain adaptation, and detect outlier examples and adversarial attacks.
Our organization maps state-of-the-art ML techniques to safety strategies in order to enhance the dependability of the ML algorithm from different aspects.
arXiv Detail & Related papers (2021-06-09T05:56:42Z) - Softmax with Regularization: Better Value Estimation in Multi-Agent
Reinforcement Learning [72.28520951105207]
Overestimation in $Q$-learning is an important problem that has been extensively studied in single-agent reinforcement learning.
We propose a novel regularization-based update scheme that penalizes large joint action-values deviating from a baseline.
We show that our method provides a consistent performance improvement on a set of challenging StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2021-03-22T14:18:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.