Defending against Adversarial Malware Attacks on ML-based Android Malware Detection Systems
- URL: http://arxiv.org/abs/2501.13782v1
- Date: Thu, 23 Jan 2025 15:59:01 GMT
- Title: Defending against Adversarial Malware Attacks on ML-based Android Malware Detection Systems
- Authors: Ping He, Lorenzo Cavallaro, Shouling Ji,
- Abstract summary: Adverse Android malware attacks compromise the detection integrity of machine learning-based systems.<n>We propose ADD, a practical adversarial Android malware defense framework.<n> ADD is effective against state-of-the-art problem space adversarial Android malware attacks.
- Score: 38.581428446989015
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Android malware presents a persistent threat to users' privacy and data integrity. To combat this, researchers have proposed machine learning-based (ML-based) Android malware detection (AMD) systems. However, adversarial Android malware attacks compromise the detection integrity of the ML-based AMD systems, raising significant concerns. Existing defenses against adversarial Android malware provide protections against feature space attacks which generate adversarial feature vectors only, leaving protection against realistic threats from problem space attacks which generate real adversarial malware an open problem. In this paper, we address this gap by proposing ADD, a practical adversarial Android malware defense framework designed as a plug-in to enhance the adversarial robustness of the ML-based AMD systems against problem space attacks. Our extensive evaluation across various ML-based AMD systems demonstrates that ADD is effective against state-of-the-art problem space adversarial Android malware attacks. Additionally, ADD shows the defense effectiveness in enhancing the adversarial robustness of real-world antivirus solutions.
Related papers
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - Efficient Query-Based Attack against ML-Based Android Malware Detection
under Zero Knowledge Setting [39.79359457491294]
We introduce AdvDroidZero, an efficient query-based attack framework against ML-based AMD methods that operates under the zero knowledge setting.
Our evaluation shows that AdvDroidZero is effective against various mainstream ML-based AMD methods, in particular, state-of-the-art such methods and real-world antivirus solutions.
arXiv Detail & Related papers (2023-09-05T00:14:12Z) - Review of Deep Learning-based Malware Detection for Android and Windows
System [2.855485723554975]
Most of the recent malware families are Artificial Intelligence (AI) enable and can deceive traditional anti-malware systems using different obfuscation techniques.
In this study we review two AI-enabled techniques for detecting malware in Windows and Android operating system, respectively.
arXiv Detail & Related papers (2023-07-04T06:02:04Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Adversarial Attacks against Windows PE Malware Detection: A Survey of
the State-of-the-Art [44.975088044180374]
This paper focuses on malware with the file format of portable executable (PE) in the family of Windows operating systems, namely Windows PE malware.
We first outline the general learning framework of Windows PE malware detection based on ML/DL.
We then highlight three unique challenges of performing adversarial attacks in the context of PE malware.
arXiv Detail & Related papers (2021-12-23T02:12:43Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
We propose an explainability-guided and model-agnostic testing framework for robustness of malware detectors.
We then use this framework to test several state-of-the-art malware detectors' abilities to detect manipulated malware.
Our findings shed light on the limitations of current malware detectors, as well as how they can be improved.
arXiv Detail & Related papers (2021-11-19T08:02:38Z) - EvadeDroid: A Practical Evasion Attack on Machine Learning for Black-box
Android Malware Detection [2.2811510666857546]
EvadeDroid is a problem-space adversarial attack designed to effectively evade black-box Android malware detectors in real-world scenarios.
We show that EvadeDroid achieves evasion rates of 80%-95% against DREBIN, Sec-SVM, ADE-MA, MaMaDroid, and Opcode-SVM with only 1-9 queries.
arXiv Detail & Related papers (2021-10-07T09:39:40Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - Arms Race in Adversarial Malware Detection: A Survey [33.8941961394801]
Malicious software (malware) is a major cyber threat that has to be tackled with Machine Learning (ML) techniques.
ML is vulnerable to attacks known as adversarial examples.
Knowing the defender's feature set is critical to the success of transfer attacks.
The effectiveness of adversarial training depends on the defender's capability in identifying the most powerful attack.
arXiv Detail & Related papers (2020-05-24T07:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.