Dual-Modal Prototype Joint Learning for Compositional Zero-Shot Learning
- URL: http://arxiv.org/abs/2501.13859v1
- Date: Thu, 23 Jan 2025 17:30:27 GMT
- Title: Dual-Modal Prototype Joint Learning for Compositional Zero-Shot Learning
- Authors: Shiyu Zhang, Cheng Yan, Yang Liu, Chenchen Jing, Lei Zhou, Wenjun Wang,
- Abstract summary: Compositional Zero-Shot Learning (CZSL) aims to recognize novel compositions of attributes and objects by leveraging knowledge learned from seen compositions.<n>We propose a novel Dual-Modal Prototype Joint Learning framework for the CZSL task.
- Score: 15.183106475115583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compositional Zero-Shot Learning (CZSL) aims to recognize novel compositions of attributes and objects by leveraging knowledge learned from seen compositions. Recent approaches have explored the use of Vision-Language Models (VLMs) to align textual and visual modalities. These methods typically employ prompt engineering, parameter-tuning, and modality fusion to generate rich textual prototypes that serve as class prototypes for CZSL. However, the modality gap results in textual prototypes being unable to fully capture the optimal representations of all class prototypes, particularly those with fine-grained features, which can be directly obtained from the visual modality. In this paper, we propose a novel Dual-Modal Prototype Joint Learning framework for the CZSL task. Our approach, based on VLMs, introduces prototypes in both the textual and visual modalities. The textual prototype is optimized to capture broad conceptual information, aiding the model's generalization across unseen compositions. Meanwhile, the visual prototype is used to mitigate the classification errors caused by the modality gap and capture fine-grained details to distinguish images with similar appearances. To effectively optimize these prototypes, we design specialized decomposition modules and a joint learning strategy that enrich the features from both modalities. These prototypes not only capture key category information during training but also serve as crucial reference targets during inference. Experimental results demonstrate that our approach achieves state-of-the-art performance in the closed-world setting and competitive performance in the open-world setting across three publicly available CZSL benchmarks. These findings validate the effectiveness of our method in advancing compositional generalization.
Related papers
- Duplex: Dual Prototype Learning for Compositional Zero-Shot Learning [17.013498508426398]
Compositional Zero-Shot Learning (CZSL) aims to enable models to recognize novel compositions of visual states and objects that were absent during training.<n>We propose Duplex, a novel dual-prototype learning method that integrates semantic and visual prototypes through a carefully designed dual-branch architecture.
arXiv Detail & Related papers (2025-01-13T08:04:32Z) - Toward Modality Gap: Vision Prototype Learning for Weakly-supervised Semantic Segmentation with CLIP [19.697857943845012]
We propose a framework to learn class-specific vision prototypes in vision space with the help of text prototypes.<n>We also propose a regional semantic contrast module that contrasts regions embedding with corresponding prototypes.<n>Our proposed framework achieves state-of-the-art performance on two benchmark datasets.
arXiv Detail & Related papers (2024-12-27T13:55:11Z) - Discriminative Image Generation with Diffusion Models for Zero-Shot Learning [53.44301001173801]
We present DIG-ZSL, a novel Discriminative Image Generation framework for Zero-Shot Learning.<n>We learn a discriminative class token (DCT) for each unseen class under the guidance of a pre-trained category discrimination model (CDM)<n>In this paper, the extensive experiments and visualizations on four datasets show that our DIG-ZSL: (1) generates diverse and high-quality images, (2) outperforms previous state-of-the-art nonhuman-annotated semantic prototype-based methods by a large margin, and (3) achieves comparable or better performance than baselines that leverage human-annot
arXiv Detail & Related papers (2024-12-23T02:18:54Z) - Discriminative Fine-tuning of LVLMs [67.14293827774827]
Contrastively-trained Vision-Language Models (VLMs) like CLIP have become the de facto approach for discriminative vision-language representation learning.
We propose to combine "the best of both worlds": a new training approach for discriminative fine-tuning of LVLMs.
arXiv Detail & Related papers (2024-12-05T17:54:27Z) - Envisioning Class Entity Reasoning by Large Language Models for Few-shot Learning [13.68867780184022]
Few-shot learning aims to recognize new concepts using a limited number of visual samples.
Our framework incorporates both the abstract class semantics and the concrete class entities extracted from Large Language Models (LLMs)
For the challenging one-shot setting, our approach, utilizing the ResNet-12 backbone, achieves an average improvement of 1.95% over the second-best competitor.
arXiv Detail & Related papers (2024-08-22T15:10:20Z) - Multi-Modal Prototypes for Open-World Semantic Segmentation [37.84805778548119]
We propose to encompass textual and visual clues as multi-modal prototypes to allow more comprehensive support for semantic segmentation.
We decompose the high-level language information as multi-aspect prototypes and aggregate the low-level visual information as more semantic prototypes.
Based on an elastic mask prediction module, we are able to solve the zero-shot, few-shot and generalized counterpart tasks in one architecture.
arXiv Detail & Related papers (2023-07-05T03:27:31Z) - Prompting Language-Informed Distribution for Compositional Zero-Shot Learning [73.49852821602057]
Compositional zero-shot learning (CZSL) task aims to recognize unseen compositional visual concepts.
We propose a model by prompting the language-informed distribution, aka., PLID, for the task.
Experimental results on MIT-States, UT-Zappos, and C-GQA datasets show the superior performance of the PLID to the prior arts.
arXiv Detail & Related papers (2023-05-23T18:00:22Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z) - Fine-Grained Semantically Aligned Vision-Language Pre-Training [151.7372197904064]
Large-scale vision-language pre-training has shown impressive advances in a wide range of downstream tasks.
Existing methods mainly model the cross-modal alignment by the similarity of the global representations of images and texts.
We introduce LO, a fine-grained semantically aLigned visiOn-langUage PrE-training framework, which learns fine-grained semantic alignment from the novel perspective of game-theoretic interactions.
arXiv Detail & Related papers (2022-08-04T07:51:48Z) - Self-Supervised Visual Representation Learning with Semantic Grouping [50.14703605659837]
We tackle the problem of learning visual representations from unlabeled scene-centric data.
We propose contrastive learning from data-driven semantic slots, namely SlotCon, for joint semantic grouping and representation learning.
arXiv Detail & Related papers (2022-05-30T17:50:59Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
We propose a dual prototypical contrastive learning approach tailored to the few-shot semantic segmentation (FSS) task.
The main idea is to encourage the prototypes more discriminative by increasing inter-class distance while reducing intra-class distance in prototype feature space.
We demonstrate that the proposed dual contrastive learning approach outperforms state-of-the-art FSS methods on PASCAL-5i and COCO-20i datasets.
arXiv Detail & Related papers (2021-11-09T08:14:50Z) - ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and
Intra-modal Knowledge Integration [48.01536973731182]
We introduce a new vision-and-language pretraining method called ROSITA.
It integrates the cross- and intra-modal knowledge in a unified scene graph to enhance the semantic alignments.
ROSITA significantly outperforms existing state-of-the-art methods on three typical vision-and-language tasks over six benchmark datasets.
arXiv Detail & Related papers (2021-08-16T13:16:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.