論文の概要: Binary Diffusion Probabilistic Model
- arxiv url: http://arxiv.org/abs/2501.13915v2
- Date: Tue, 30 Sep 2025 13:58:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 14:44:59.670401
- Title: Binary Diffusion Probabilistic Model
- Title(参考訳): 二元拡散確率モデル
- Authors: Vitaliy Kinakh, Slava Voloshynovskiy,
- Abstract要約: 本稿では,バイナリ形式のデータ表現に特化して設計された生成フレームワークを提案する。
バイナリ拡散確率モデルでは、画像を多ビット平面と学習可能なバイナリ埋め込みを用いてバイナリ表現にエンコードする。
これらのバイナリ表現は、きめ細かいノイズ制御、収束の加速、推論コストの削減を提供する。
- 参考スコア(独自算出の注目度): 6.329379610824222
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose the Binary Diffusion Probabilistic Model (BDPM), a generative framework specifically designed for data representations in binary form. Conventional denoising diffusion probabilistic models (DDPMs) assume continuous inputs, use mean squared error objectives and Gaussian perturbations, i.e., assumptions that are not suited to discrete and binary representations. BDPM instead encodes images into binary representations using multi bit-plane and learnable binary embeddings, perturbs them via XOR-based noise, and trains a model by optimizing a binary cross-entropy loss. These binary representations offer fine-grained noise control, accelerate convergence, and reduce inference cost. On image-to-image translation tasks, such as super-resolution, inpainting, and blind restoration, BDPM based on a small denoiser and multi bit-plane representation outperforms state-of-the-art methods on FFHQ, CelebA, and CelebA-HQ using a few sampling steps. In class-conditional generation on ImageNet-1k, BDPM based on learnable binary embeddings achieves competitive results among models with both low parameter counts and a few sampling steps.
- Abstract(参考訳): 本稿では,バイナリ形式のデータ表現に特化して設計された生成フレームワークであるバイナリ拡散確率モデル(BDPM)を提案する。
従来の拡散確率モデル(DDPM)は連続的な入力を仮定し、平均二乗誤差目標とガウス摂動、すなわち離散表現や二項表現には適さない仮定を用いる。
代わりにBDPMは、画像を多ビット平面と学習可能なバイナリ埋め込みを使ってバイナリ表現にエンコードし、XORベースのノイズによってそれらを摂動させ、バイナリクロスエントロピー損失を最適化してモデルを訓練する。
これらのバイナリ表現は、きめ細かいノイズ制御、収束の加速、推論コストの削減を提供する。
超解像、塗装、ブラインド復元などの画像から画像への変換タスクにおいて、BDPMはFFHQ、CelebA、CelebA-HQの最先端の手法よりもいくつかのサンプリングステップで優れている。
ImageNet-1kのクラス条件生成において、学習可能なバイナリ埋め込みに基づくBDPMは、低パラメータ数といくつかのサンプリングステップを持つモデル間で競合する結果を得る。
関連論文リスト
- Diffusion Models for Solving Inverse Problems via Posterior Sampling with Piecewise Guidance [52.705112811734566]
断片的なガイダンススキームを用いて,逆問題を解決するための新しい拡散型フレームワークが導入された。
提案手法は問題に依存しず,様々な逆問題に容易に適応できる。
このフレームワークは, (4時間), (8時間) の超分解能タスクに対して, (23%), (24%) および (24%) の無作為マスクを塗布する場合の (25%) の推論時間を短縮する。
論文 参考訳(メタデータ) (2025-07-22T19:35:14Z) - Empirical Bayesian image restoration by Langevin sampling with a denoising diffusion implicit prior [0.18434042562191813]
本稿では,新しい高効率画像復元手法を提案する。
DDPMデノイザーを経験的ベイズアン・ランゲヴィンアルゴリズムに組み込む。
画像推定精度と計算時間の両方において最先端の戦略を改善する。
論文 参考訳(メタデータ) (2024-09-06T16:20:24Z) - Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
超圧縮アルゴリズムであるバイナリ化は、高度な拡散モデル(DM)を効果的に加速する可能性を提供する
既存の二項化法では性能が著しく低下する。
画像SRのための新しいバイナライズ拡散モデルBI-DiffSRを提案する。
論文 参考訳(メタデータ) (2024-06-09T10:30:25Z) - SeNM-VAE: Semi-Supervised Noise Modeling with Hierarchical Variational Autoencoder [13.453138169497903]
SeNM-VAEは、ペアとアンペアの両方のデータセットを利用して、現実的な劣化データを生成する半教師付きノイズモデリング手法である。
実世界の画像認識と超分解能タスクのためのペアトレーニングサンプルを生成するために,本手法を用いた。
提案手法は, 合成劣化画像の品質を, 他の不対とペアのノイズモデリング法と比較して向上させる。
論文 参考訳(メタデータ) (2024-03-26T09:03:40Z) - Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction [31.503662384666274]
科学と工学において、ゴールは、ある画像のモダリティを記述する既知のフォワードモデルから収集された少数の測定値から未知の画像を推測することである。
モチベートされたスコアベース拡散モデルはその経験的成功により、画像再構成に先立って模範の印象的な候補として現れた。
論文 参考訳(メタデータ) (2024-03-25T15:58:26Z) - Generalized Consistency Trajectory Models for Image Manipulation [59.576781858809355]
拡散モデル(DM)は、画像編集や復元などの応用と同様に、無条件生成において優れている。
本研究の目的は、一般化されたCTM(GCTM)を提案することによって、整合性軌道モデル(CTM)の完全なポテンシャルを解放することである。
本稿では,GCTMの設計空間について論じ,画像から画像への変換,復元,編集など,様々な画像操作タスクにおいて有効性を示す。
論文 参考訳(メタデータ) (2024-03-19T07:24:54Z) - Improving Denoising Diffusion Probabilistic Models via Exploiting Shared
Representations [5.517338199249029]
SR-DDPMはノイズ拡散過程を逆転することで高品質な画像を生成する生成モデルのクラスである。
多様なデータ分布の類似性を利用して、画像の品質を損なうことなく、複数のタスクにスケールできる。
提案手法を標準画像データセット上で評価し、FIDとSSIMの指標で条件付きDDPMと条件付きDDPMの両方より優れていることを示す。
論文 参考訳(メタデータ) (2023-11-27T22:30:26Z) - Denoising Diffusion Bridge Models [54.87947768074036]
拡散モデルは、プロセスを使用してデータにノイズをマッピングする強力な生成モデルである。
画像編集のような多くのアプリケーションでは、モデル入力はランダムノイズではない分布から来る。
本研究では, DDBM(Denoising Diffusion Bridge Models)を提案する。
論文 参考訳(メタデータ) (2023-09-29T03:24:24Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
この研究は、拡散モデルと物理ベースの露光モデルとをシームレスに統合することで、この問題に対処する。
提案手法は,バニラ拡散モデルと比較して性能が大幅に向上し,推論時間を短縮する。
提案するフレームワークは、実際のペア付きデータセット、SOTAノイズモデル、および異なるバックボーンネットワークの両方で動作する。
論文 参考訳(メタデータ) (2023-07-15T04:48:35Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - Multiscale Structure Guided Diffusion for Image Deblurring [24.09642909404091]
拡散確率モデル (DPM) は画像の劣化に用いられている。
暗黙のバイアスとして、単純だが効果的なマルチスケール構造ガイダンスを導入する。
目に見えないデータのアーティファクトが少ないほど、より堅牢なデブロアリング結果を示します。
論文 参考訳(メタデータ) (2022-12-04T10:40:35Z) - Score-based diffusion models for accelerated MRI [35.3148116010546]
本研究では,画像中の逆問題を容易に解けるような条件分布からデータをサンプリングする方法を提案する。
我々のモデルは、訓練のためにのみ等級画像を必要とするが、複雑な値のデータを再構成することができ、さらに並列画像まで拡張できる。
論文 参考訳(メタデータ) (2021-10-08T08:42:03Z) - Score-Based Generative Modeling through Stochastic Differential
Equations [114.39209003111723]
複素データ分布を雑音を注入することによって既知の事前分布に変換する微分方程式を提案する。
対応する逆時間SDEは、ノイズを緩やかに除去し、先行分布をデータ分布に戻す。
スコアベース生成モデリングの進歩を活用することで、これらのスコアをニューラルネットワークで正確に推定することができる。
スコアベース生成モデルから1024×1024画像の高忠実度生成を初めて示す。
論文 参考訳(メタデータ) (2020-11-26T19:39:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。