論文の概要: Fast3R: Towards 3D Reconstruction of 1000+ Images in One Forward Pass
- arxiv url: http://arxiv.org/abs/2501.13928v1
- Date: Thu, 23 Jan 2025 18:59:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:58:49.427616
- Title: Fast3R: Towards 3D Reconstruction of 1000+ Images in One Forward Pass
- Title(参考訳): Fast3R:1000枚以上の画像を1つの前方通過で3D化
- Authors: Jianing Yang, Alexander Sax, Kevin J. Liang, Mikael Henaff, Hao Tang, Ang Cao, Joyce Chai, Franziska Meier, Matt Feiszli,
- Abstract要約: 我々は,DUSt3Rに並列に複数のビューを処理することで,効率よくスケーラブルな3D再構成を実現する新しい多視点一般化であるFast3Rを提案する。
Fast3Rは最先端のパフォーマンスを示し、推論速度とエラーの蓄積が大幅に改善された。
- 参考スコア(独自算出の注目度): 68.78222900840132
- License:
- Abstract: Multi-view 3D reconstruction remains a core challenge in computer vision, particularly in applications requiring accurate and scalable representations across diverse perspectives. Current leading methods such as DUSt3R employ a fundamentally pairwise approach, processing images in pairs and necessitating costly global alignment procedures to reconstruct from multiple views. In this work, we propose Fast 3D Reconstruction (Fast3R), a novel multi-view generalization to DUSt3R that achieves efficient and scalable 3D reconstruction by processing many views in parallel. Fast3R's Transformer-based architecture forwards N images in a single forward pass, bypassing the need for iterative alignment. Through extensive experiments on camera pose estimation and 3D reconstruction, Fast3R demonstrates state-of-the-art performance, with significant improvements in inference speed and reduced error accumulation. These results establish Fast3R as a robust alternative for multi-view applications, offering enhanced scalability without compromising reconstruction accuracy.
- Abstract(参考訳): マルチビュー3D再構成は、コンピュータビジョンにおいて、特に様々な視点で正確でスケーラブルな表現を必要とするアプリケーションにおいて、依然として中心的な課題である。
DUSt3Rのような現在の先導的な手法は、基本的にペアワイズなアプローチを採用し、画像をペアで処理し、複数のビューから再構築するために、コストのかかるグローバルアライメント手順を必要とする。
本研究では,DUSt3Rに並列に複数のビューを処理することで,効率よくスケーラブルな3D再構成を実現する新しい多視点一般化であるFast3Rを提案する。
Fast3RのTransformerベースのアーキテクチャは、反復的なアライメントの必要性を回避し、N画像を単一のフォワードパスで転送する。
カメラのポーズ推定と3D再構成に関する広範な実験を通じて、Fast3Rは最先端の性能を示し、推論速度とエラーの蓄積を著しく改善した。
これらの結果は、Fast3Rをマルチビューアプリケーションの堅牢な代替品として確立し、再構築精度を損なうことなく拡張されたスケーラビリティを提供する。
関連論文リスト
- G3R: Gradient Guided Generalizable Reconstruction [39.198327570559684]
大規模シーンにおける高品質な3Dシーン表現を効率よく予測できる一般化可能な再構成手法であるG3Rを導入する。
都市走行とドローンのデータセットの実験では、G3Rは様々な大きなシーンをまたがって一般化し、再建プロセスを少なくとも10倍加速している。
論文 参考訳(メタデータ) (2024-09-28T16:54:16Z) - GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement [51.97726804507328]
マルチビュー画像から3次元メッシュを再構成する手法を提案する。
提案手法は, 変圧器を用いたトリプレーンジェネレータとニューラルレージアンスフィールド(NeRF)モデルを用いた大規模再構成モデルから着想を得たものである。
論文 参考訳(メタデータ) (2024-06-09T05:19:24Z) - 2L3: Lifting Imperfect Generated 2D Images into Accurate 3D [16.66666619143761]
マルチビュー(MV)3次元再構成は,生成したMV画像を一貫した3次元オブジェクトに融合させる,有望なソリューションである。
しかし、生成された画像は、通常、一貫性のない照明、不整合幾何学、スパースビューに悩まされ、復元の質が低下する。
本稿では, 内在的分解誘導, 過渡的モノ先行誘導, および3つの問題に対処するための視認性向上を活用する新しい3次元再構成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T02:30:31Z) - DUSt3R: Geometric 3D Vision Made Easy [8.471330244002564]
Dense and Unconstrained Stereo 3D Reconstruction of arbitrary image collections。
本定式化は単眼および両眼の再建症例を円滑に統一することを示す。
私たちの定式化はシーンの3Dモデルと深度情報を直接提供しますが、興味深いことに、シームレスに回復できます。
論文 参考訳(メタデータ) (2023-12-21T18:52:14Z) - Implicit Shape and Appearance Priors for Few-Shot Full Head
Reconstruction [17.254539604491303]
本稿では,数発のフル3次元頭部再構成の問題点に対処する。
我々は、座標に基づく表現に先立って確率的形状と外観を組み込むことにより、これを達成した。
我々はH3DSデータセットを拡張し、60個の高解像度3Dフルヘッドスキャンと対応する画像とマスクを含む。
論文 参考訳(メタデータ) (2023-10-12T07:35:30Z) - R3D3: Dense 3D Reconstruction of Dynamic Scenes from Multiple Cameras [106.52409577316389]
R3D3は高密度3次元再構成とエゴモーション推定のためのマルチカメラシステムである。
提案手法は,複数のカメラからの時空間情報と単眼深度補正を利用する。
この設計により、困難で動的な屋外環境の密集した一貫した3次元再構成が可能になる。
論文 参考訳(メタデータ) (2023-08-28T17:13:49Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
フォトリアリスティック・ノベルビューを合成可能な高忠実度3次元生成対向ネットワーク(GAN)インバージョン・フレームワークを提案する。
提案手法は,1枚の画像から高忠実度3Dレンダリングを可能にし,AI生成3Dコンテンツの様々な応用に期待できる。
論文 参考訳(メタデータ) (2022-11-28T18:59:52Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
そこで我々は,インターネット写真コレクションから効率よく高精度な表面再構成を実現する新しい手法を提案する。
そこで本研究では,これらのシーンにおける再構成性能を評価するための新しいベンチマークとプロトコルを提案する。
論文 参考訳(メタデータ) (2022-05-25T17:59:53Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
空間校正カメラで撮影した多視点画像から3次元ポーズを復元する手法を提案する。
我々は3次元形状を利用して、入力画像をカメラ視点から切り離したポーズの潜在表現に融合する。
アーキテクチャは、カメラプロジェクション演算子に学習した表現を条件付け、ビュー当たりの正確な2次元検出を生成する。
論文 参考訳(メタデータ) (2020-04-05T12:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。