Hallucination Mitigation using Agentic AI Natural Language-Based Frameworks
- URL: http://arxiv.org/abs/2501.13946v1
- Date: Sun, 19 Jan 2025 11:19:25 GMT
- Title: Hallucination Mitigation using Agentic AI Natural Language-Based Frameworks
- Authors: Diego Gosmar, Deborah A. Dahl,
- Abstract summary: Hallucinations remain a significant challenge in current Generative AI models.
This study investigates how orchestrating multiple Artificial Intelligent Agents can help mitigate such hallucinations.
- Score: 0.0
- License:
- Abstract: Hallucinations remain a significant challenge in current Generative AI models, undermining trust in AI systems and their reliability. This study investigates how orchestrating multiple specialized Artificial Intelligent Agents can help mitigate such hallucinations, with a focus on systems leveraging Natural Language Processing (NLP) to facilitate seamless agent interactions. To achieve this, we design a pipeline that introduces over three hundred prompts, purposefully crafted to induce hallucinations, into a front-end agent. The outputs are then systematically reviewed and refined by second- and third-level agents, each employing distinct large language models and tailored strategies to detect unverified claims, incorporate explicit disclaimers, and clarify speculative content. Additionally, we introduce a set of novel Key Performance Indicators (KPIs) specifically designed to evaluate hallucination score levels. A dedicated fourth-level AI agent is employed to evaluate these KPIs, providing detailed assessments and ensuring accurate quantification of shifts in hallucination-related behaviors. A core component of this investigation is the use of the OVON (Open Voice Network) framework, which relies on universal NLP-based interfaces to transfer contextual information among agents. Through structured JSON messages, each agent communicates its assessment of the hallucination likelihood and the reasons underlying questionable content, thereby enabling the subsequent stage to refine the text without losing context. The results demonstrate that employing multiple specialized agents capable of interoperating with each other through NLP-based agentic frameworks can yield promising outcomes in hallucination mitigation, ultimately bolstering trust within the AI community.
Related papers
- Memento No More: Coaching AI Agents to Master Multiple Tasks via Hints Internalization [56.674356045200696]
We propose a novel method to train AI agents to incorporate knowledge and skills for multiple tasks without the need for cumbersome note systems or prior high-quality demonstration data.
Our approach employs an iterative process where the agent collects new experiences, receives corrective feedback from humans in the form of hints, and integrates this feedback into its weights.
We demonstrate the efficacy of our approach by implementing it in a Llama-3-based agent which, after only a few rounds of feedback, outperforms advanced models GPT-4o and DeepSeek-V3 in a taskset.
arXiv Detail & Related papers (2025-02-03T17:45:46Z) - 100% Hallucination Elimination Using Acurai [0.0]
Acurai achieves 100% hallucination-free responses in large language models (LLMs) by reformatting queries and context data prior to input.
We validate this method using the RAGTruth corpus, demonstrating its ability to eliminate 100% hallucinations for both GPT-4 and GPT-3.5 Turbo.
arXiv Detail & Related papers (2024-12-06T17:54:54Z) - Investigating the Role of Prompting and External Tools in Hallucination Rates of Large Language Models [0.0]
Large Language Models (LLMs) are powerful computational models trained on extensive corpora of human-readable text, enabling them to perform general-purpose language understanding and generation.
Despite these successes, LLMs often produce inaccuracies, commonly referred to as hallucinations.
This paper provides an empirical evaluation of different prompting strategies and frameworks aimed at reducing hallucinations in LLMs.
arXiv Detail & Related papers (2024-10-25T08:34:53Z) - Unlocking Potential Binders: Multimodal Pretraining DEL-Fusion for Denoising DNA-Encoded Libraries [51.72836644350993]
Multimodal Pretraining DEL-Fusion model (MPDF)
We develop pretraining tasks applying contrastive objectives between different compound representations and their text descriptions.
We propose a novel DEL-fusion framework that amalgamates compound information at the atomic, submolecular, and molecular levels.
arXiv Detail & Related papers (2024-09-07T17:32:21Z) - Reefknot: A Comprehensive Benchmark for Relation Hallucination Evaluation, Analysis and Mitigation in Multimodal Large Language Models [13.48296910438554]
We introduce Reefknot, a comprehensive benchmark targeting relation hallucinations, comprising over 20,000 real-world samples.
We provide a systematic definition of relation hallucinations, integrating perceptive and cognitive perspectives, and construct a relation-based corpus using the Visual Genome scene graph dataset.
We propose a novel confidence-based mitigation strategy, which reduces the hallucination rate by an average of 9.75% across three datasets, including Reefknot.
arXiv Detail & Related papers (2024-08-18T10:07:02Z) - Improving Zero-Shot ObjectNav with Generative Communication [60.84730028539513]
We propose a new method for improving zero-shot ObjectNav.
Our approach takes into account that the ground agent may have limited and sometimes obstructed view.
arXiv Detail & Related papers (2024-08-03T22:55:26Z) - KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents [52.348929737851165]
Large Language Models (LLMs) have demonstrated great potential in complex reasoning tasks, yet they fall short when tackling more sophisticated challenges.
This inadequacy primarily stems from the lack of built-in action knowledge in language agents.
We introduce KnowAgent, a novel approach designed to enhance the planning capabilities of LLMs by incorporating explicit action knowledge.
arXiv Detail & Related papers (2024-03-05T16:39:12Z) - Retrieve Only When It Needs: Adaptive Retrieval Augmentation for Hallucination Mitigation in Large Language Models [68.91592125175787]
Hallucinations pose a significant challenge for the practical implementation of large language models (LLMs)
We present Rowen, a novel approach that enhances LLMs with a selective retrieval augmentation process tailored to address hallucinations.
arXiv Detail & Related papers (2024-02-16T11:55:40Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
Large language models (LLMs) have shown promise for generative and knowledge-intensive tasks including question-answering (QA) tasks.
This paper analyses the phenomenon of hallucination in medical generative QA systems using widely adopted LLMs and datasets.
arXiv Detail & Related papers (2023-10-10T03:05:44Z) - Data Mining in Clinical Trial Text: Transformers for Classification and
Question Answering Tasks [2.127049691404299]
This research applies advances in natural language processing to evidence synthesis based on medical texts.
The main focus is on information characterized via the Population, Intervention, Comparator, and Outcome (PICO) framework.
Recent neural network architectures based on transformers show capacities for transfer learning and increased performance on downstream natural language processing tasks.
arXiv Detail & Related papers (2020-01-30T11:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.