論文の概要: Implicit Neural Surface Deformation with Explicit Velocity Fields
- arxiv url: http://arxiv.org/abs/2501.14038v1
- Date: Thu, 23 Jan 2025 19:11:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:57:02.662242
- Title: Implicit Neural Surface Deformation with Explicit Velocity Fields
- Title(参考訳): 明示的な速度場を有する入射ニューラル表面変形
- Authors: Lu Sang, Zehranaz Canfes, Dongliang Cao, Florian Bernard, Daniel Cremers,
- Abstract要約: 一対の点雲間の変形と時間変化したニューラルな暗黙の表面を同時に予測する最初の教師なし手法を導入する。
本手法は, 中間形状の監督を伴わずに剛性変形と非剛性変形を両立させることができる。
- 参考スコア(独自算出の注目度): 47.610773635281085
- License:
- Abstract: In this work, we introduce the first unsupervised method that simultaneously predicts time-varying neural implicit surfaces and deformations between pairs of point clouds. We propose to model the point movement using an explicit velocity field and directly deform a time-varying implicit field using the modified level-set equation. This equation utilizes an iso-surface evolution with Eikonal constraints in a compact formulation, ensuring the integrity of the signed distance field. By applying a smooth, volume-preserving constraint to the velocity field, our method successfully recovers physically plausible intermediate shapes. Our method is able to handle both rigid and non-rigid deformations without any intermediate shape supervision. Our experimental results demonstrate that our method significantly outperforms existing works, delivering superior results in both quality and efficiency.
- Abstract(参考訳): 本研究では,時間変化のあるニューラルな暗黙の表面と点雲の対間の変形を同時に予測する最初の教師なし手法を紹介する。
そこで本稿では,明示的な速度場を用いて点運動をモデル化し,修正されたレベルセット方程式を用いて時間変化の暗黙の場を直接変形する手法を提案する。
この方程式は、コンパクトな定式化におけるアイコンの制約を伴う同相曲面の進化を利用し、符号付き距離場の整合性を保証する。
速度場にスムーズな体積保存制約を適用することにより,本手法は物理的に安定な中間形状の復元に成功している。
本手法は, 中間形状の監督を伴わずに剛性変形と非剛性変形を両立させることができる。
実験の結果,本手法は既存の作業よりも優れており,品質と効率の両面で優れた結果が得られていることがわかった。
関連論文リスト
- Event-Aided Time-to-Collision Estimation for Autonomous Driving [28.13397992839372]
ニューロモルフィックなイベントベースカメラを用いて衝突時刻を推定する新しい手法を提案する。
提案アルゴリズムは, 事象データに適合する幾何モデルに対して, 効率的かつ高精度な2段階のアプローチで構成する。
合成データと実データの両方の実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-07-10T02:37:36Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
オーバー・ザ・エア・モデル・トレーニングの枠組みの中で,適応勾配法,特にAdaGradとAdamの連合バージョンを提案する。
解析の結果,AdaGrad に基づくトレーニングアルゴリズムは $mathcalO(ln(T) / T 1 - frac1alpha の速度で定常点に収束することがわかった。
論文 参考訳(メタデータ) (2024-03-11T09:10:37Z) - DiffuSeq-v2: Bridging Discrete and Continuous Text Spaces for
Accelerated Seq2Seq Diffusion Models [58.450152413700586]
ガウス空間に基づく離散突然変異を再構成する学習において拡散モデルを容易にする軟吸収状態を導入する。
我々は、サンプリングプロセスの高速化のために、連続空間内で最先端のODEソルバを用いている。
提案手法は, トレーニング収束率を4倍に向上させ, 類似品質のサンプルを800倍高速に生成する。
論文 参考訳(メタデータ) (2023-10-09T15:29:10Z) - Reduced Representation of Deformation Fields for Effective Non-rigid
Shape Matching [26.77241999731105]
変形場の縮小表現を利用して,非剛体物体間の対応を計算するための新しい手法を提案する。
ネットワークは空間(ノード)における粗い位置の変形パラメータを学習させることにより、滑らかさを保証された閉形式の連続的な変形場を再構築する。
我々のモデルは高い表現力を持ち、複雑な変形を捉えることができる。
論文 参考訳(メタデータ) (2022-11-26T16:11:17Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
本稿では,学習物理シミュレーションにおける線形運動量を保証する新しい手法を提案する。
我々は、強い制約で運動量の保存を強制し、反対称的な連続的な畳み込み層を通して実現する。
提案手法により,学習シミュレータの物理的精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-10-12T09:12:59Z) - Error-Correcting Neural Networks for Semi-Lagrangian Advection in the
Level-Set Method [0.0]
本稿では,画像超解像技術とスカラートランスポートを融合した機械学習フレームワークを提案する。
我々は,インターフェースの粗いメッシュ進化における数値粘度を最小化するために,オンザフライデータ駆動補正を計算できるかどうかを検討する。
論文 参考訳(メタデータ) (2021-10-22T06:36:15Z) - The Neural Network shifted-Proper Orthogonal Decomposition: a Machine
Learning Approach for Non-linear Reduction of Hyperbolic Equations [0.0]
本研究では,統計的学習フレームワークにおいて,正しい前処理変換を自動的に検出する問題にアプローチする。
純粋にデータ駆動方式により、線形部分空間操作の既存のアプローチを未知の対流場を持つ非線形双曲問題に一般化することができる。
提案アルゴリズムは、その性能をベンチマークするために単純なテストケースに対して検証され、その後、多相シミュレーションに成功している。
論文 参考訳(メタデータ) (2021-08-14T15:13:35Z) - Fast Gravitational Approach for Rigid Point Set Registration with
Ordinary Differential Equations [79.71184760864507]
本稿では,FGA(Fast Gravitational Approach)と呼ばれる厳密な点集合アライメントのための物理に基づく新しい手法を紹介する。
FGAでは、ソースとターゲットの点集合は、シミュレーションされた重力場内を移動しながら、世界規模で多重リンクされた方法で相互作用する質量を持つ剛体粒子群として解釈される。
従来のアライメント手法では,新しいメソッドクラスには特徴がないことを示す。
論文 参考訳(メタデータ) (2020-09-28T15:05:39Z) - Hamiltonian Dynamics for Real-World Shape Interpolation [66.47407593823208]
我々は3次元形状の古典的問題を再考し、ハミルトン力学に基づく新しい物理的に妥当なアプローチを提案する。
本手法は, 中間形状を正確に保存し, 自己切断を回避し, 高分解能スキャンにスケーラブルである。
論文 参考訳(メタデータ) (2020-04-10T18:38:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。