論文の概要: Fast Gravitational Approach for Rigid Point Set Registration with
Ordinary Differential Equations
- arxiv url: http://arxiv.org/abs/2009.14005v2
- Date: Thu, 1 Jul 2021 15:12:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 22:34:41.963396
- Title: Fast Gravitational Approach for Rigid Point Set Registration with
Ordinary Differential Equations
- Title(参考訳): 正規微分方程式を用いた剛点集合登録のための高速重力法
- Authors: Sk Aziz Ali and Kerem Kahraman and Christian Theobalt and Didier
Stricker and Vladislav Golyanik
- Abstract要約: 本稿では,FGA(Fast Gravitational Approach)と呼ばれる厳密な点集合アライメントのための物理に基づく新しい手法を紹介する。
FGAでは、ソースとターゲットの点集合は、シミュレーションされた重力場内を移動しながら、世界規模で多重リンクされた方法で相互作用する質量を持つ剛体粒子群として解釈される。
従来のアライメント手法では,新しいメソッドクラスには特徴がないことを示す。
- 参考スコア(独自算出の注目度): 79.71184760864507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article introduces a new physics-based method for rigid point set
alignment called Fast Gravitational Approach (FGA). In FGA, the source and
target point sets are interpreted as rigid particle swarms with masses
interacting in a globally multiply-linked manner while moving in a simulated
gravitational force field. The optimal alignment is obtained by explicit
modeling of forces acting on the particles as well as their velocities and
displacements with second-order ordinary differential equations of motion.
Additional alignment cues (point-based or geometric features, and other
boundary conditions) can be integrated into FGA through particle masses. We
propose a smooth-particle mass function for point mass initialization, which
improves robustness to noise and structural discontinuities. To avoid
prohibitive quadratic complexity of all-to-all point interactions, we adapt a
Barnes-Hut tree for accelerated force computation and achieve quasilinear
computational complexity. We show that the new method class has characteristics
not found in previous alignment methods such as efficient handling of partial
overlaps, inhomogeneous point sampling densities, and coping with large point
clouds with reduced runtime compared to the state of the art. Experiments show
that our method performs on par with or outperforms all compared competing
non-deep-learning-based and general-purpose techniques (which do not assume the
availability of training data and a scene prior) in resolving transformations
for LiDAR data and gains state-of-the-art accuracy and speed when coping with
different types of data disturbances.
- Abstract(参考訳): 本稿では,FGA(Fast Gravitational Approach)と呼ばれる厳密な点集合アライメントのための物理に基づく新しい手法を紹介する。
fgaでは、ソースとターゲットの点集合は、シミュレーション重力場を移動しながら、質量がグローバルに多重結合された方法で相互作用する剛性粒子群と解釈される。
最適アライメントは、粒子に作用する力とその運動の2次常微分方程式による速度と変位の明示的なモデリングによって得られる。
追加のアライメントキュー(点ベースまたは幾何学的特徴、その他の境界条件)は粒子質量を通してFGAに統合することができる。
雑音や構造的不連続性に対するロバスト性を改善する点質量初期化のための滑らかな粒子質量関数を提案する。
オール・ツー・オール・ポイント相互作用の無理な二次的複雑性を避けるため、バーンズ・ヒュート木を加速力計算に適応させ、近似線形計算複雑性を達成する。
従来のアライメント手法では, 部分オーバーラップの効率的な処理, 不均質な点サンプリング密度, および, 実行時間が少ない大点雲に対処するといった特徴が認められなかった。
実験の結果,LiDARデータの変換処理において,非深層学習と汎用技術(トレーニングデータの可用性を前提としない)を比較し,異なる種類のデータ乱れに対処する際の最先端の精度と速度を得ることができた。
関連論文リスト
- Stochastic Reconstruction of Gappy Lagrangian Turbulent Signals by Conditional Diffusion Models [1.7810134788247751]
本研究では, 乱流によって受動的に対流する小物体の軌道に沿って, 空間・速度の欠落を再現する手法を提案する。
近年提案されているデータ駆動機械学習技術である条件付き生成拡散モデルを利用する。
論文 参考訳(メタデータ) (2024-10-31T14:26:10Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
オーバー・ザ・エア・モデル・トレーニングの枠組みの中で,適応勾配法,特にAdaGradとAdamの連合バージョンを提案する。
解析の結果,AdaGrad に基づくトレーニングアルゴリズムは $mathcalO(ln(T) / T 1 - frac1alpha の速度で定常点に収束することがわかった。
論文 参考訳(メタデータ) (2024-03-11T09:10:37Z) - Rigorous dynamical mean field theory for stochastic gradient descent
methods [17.90683687731009]
一階勾配法の一家系の正確な高次元に対する閉形式方程式を証明した。
これには勾配降下(SGD)やネステロフ加速度などの広く使われているアルゴリズムが含まれる。
論文 参考訳(メタデータ) (2022-10-12T21:10:55Z) - AutoIP: A United Framework to Integrate Physics into Gaussian Processes [15.108333340471034]
あらゆる微分方程式をガウス過程に統合できる枠組みを提案する。
本手法は,シミュレーションと実世界の応用の両方において,バニラGPの改善を示す。
論文 参考訳(メタデータ) (2022-02-24T19:02:14Z) - Fast Simultaneous Gravitational Alignment of Multiple Point Sets [82.32416743939004]
本稿では,複数点集合の同時登録のための新しいレジリエントな手法を提案し,後者を相互誘導力場内で厳密に動く粒子群として解釈する。
物理法則の変更によるシミュレーションの改善と、グローバルな多重リンク点相互作用の加速により、MBGA(Multi-Body Gravitational Approach)はノイズや欠落データに対して堅牢である。
様々な実験環境では、MBGAは精度と実行時間の観点から、いくつかの基準点セットアライメントアプローチより優れていることが示されている。
論文 参考訳(メタデータ) (2021-06-21T17:59:40Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
DiffPDは、暗黙の時間積分を持つ効率的な微分可能なソフトボディシミュレータである。
我々はDiffPDの性能を評価し,様々な応用における標準ニュートン法と比較して4~19倍のスピードアップを観測した。
論文 参考訳(メタデータ) (2021-01-15T00:13:33Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z) - Scalable Differentiable Physics for Learning and Control [99.4302215142673]
微分物理学は、物理的対象や環境を含む問題を学習し、制御するための強力なアプローチである。
我々は、多数のオブジェクトとその相互作用をサポートすることができる微分可能物理学のためのスケーラブルなフレームワークを開発する。
論文 参考訳(メタデータ) (2020-07-04T19:07:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。