Selecting Critical Scenarios of DER Adoption in Distribution Grids Using Bayesian Optimization
- URL: http://arxiv.org/abs/2501.14118v1
- Date: Thu, 23 Jan 2025 22:20:30 GMT
- Title: Selecting Critical Scenarios of DER Adoption in Distribution Grids Using Bayesian Optimization
- Authors: Olivier Mulkin, Miguel Heleno, Mike Ludkovski,
- Abstract summary: We develop a new methodology to select scenarios of DER adoption most critical for distribution grids.
We propose a highly efficient search framework based on multi-objective Bayesian Optimization.
Case studies on realistic feeders with 200-400 buses demonstrate the effectiveness and accuracy of our approach.
- Score: 0.0
- License:
- Abstract: We develop a new methodology to select scenarios of DER adoption most critical for distribution grids. Anticipating risks of future voltage and line flow violations due to additional PV adopters is central for utility investment planning but continues to rely on deterministic or ad hoc scenario selection. We propose a highly efficient search framework based on multi-objective Bayesian Optimization. We treat underlying grid stress metrics as computationally expensive black-box functions, approximated via Gaussian Process surrogates and design an acquisition function based on probability of scenarios being Pareto-critical across a collection of line- and bus-based violation objectives. Our approach provides a statistical guarantee and offers an order of magnitude speed-up relative to a conservative exhaustive search. Case studies on realistic feeders with 200-400 buses demonstrate the effectiveness and accuracy of our approach.
Related papers
- Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
We aim to learn decision policies that optimize an unbiased offline estimate of an online reward metric.
We propose a single framework built on their equivalence in learning scenarios.
Our framework enables us to characterize the variance-optimal unbiased estimator and provide a closed-form solution for it.
arXiv Detail & Related papers (2024-05-09T12:52:22Z) - Learning-assisted Stochastic Capacity Expansion Planning: A Bayesian Optimization Approach [3.124884279860061]
Large-scale capacity expansion problems (CEPs) are central to costeffective decarbonization of regional energy systems.
Here, we propose a learning-assisted approximate solution method to tractably solve two-stage CEPs.
We show that our approach yields an estimated cost savings of up to 3.8% in comparison to series aggregation approaches.
arXiv Detail & Related papers (2024-01-19T01:40:58Z) - Risk-Controlling Model Selection via Guided Bayesian Optimization [35.53469358591976]
We find a configuration that adheres to user-specified limits on certain risks while being useful with respect to other conflicting metrics.
Our method identifies a set of optimal configurations residing in a designated region of interest.
We demonstrate the effectiveness of our approach on a range of tasks with multiple desiderata, including low error rates, equitable predictions, handling spurious correlations, managing rate and distortion in generative models, and reducing computational costs.
arXiv Detail & Related papers (2023-12-04T07:29:44Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - On the Computational Complexity of Private High-dimensional Model Selection [18.964255744068122]
We consider the problem of model selection in a high-dimensional sparse linear regression model under privacy constraints.
We propose an efficient Metropolis-Hastings algorithm and under certain regularity conditions, we establish that it enjoys mixing time to its stationary distribution.
arXiv Detail & Related papers (2023-10-11T19:53:15Z) - Extreme Scenario Selection in Day-Ahead Power Grid Operational Planning [0.0]
We propose and analyze the application of statistical functional depth metrics for the selection of extreme scenarios in day-ahead grid planning.
Our primary motivation is screening of probabilistic scenarios for realized load and renewable generation, in order to identify scenarios most relevant for operational risk mitigation.
We investigate a range of functional depth measures, as well as a range of operational risks, including load shedding, operational costs, reserves shortfall and variable renewable energy curtailment.
arXiv Detail & Related papers (2023-09-20T05:09:09Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
We propose a framework, called BALLET, which adaptively filters for a high-confidence region of interest.
We show theoretically that BALLET can efficiently shrink the search space, and can exhibit a tighter regret bound than standard BO.
arXiv Detail & Related papers (2023-07-25T09:45:47Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - A Robust Multi-Objective Bayesian Optimization Framework Considering
Input Uncertainty [0.0]
In real-life applications like engineering design, the designer often wants to take multiple objectives as well as input uncertainty into account.
We introduce a novel Bayesian optimization framework to efficiently perform multi-objective optimization considering input uncertainty.
arXiv Detail & Related papers (2022-02-25T17:45:26Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVE is a method to automatically generate challenging scenarios that cause a given planner to produce undesirable behavior, like collisions.
To maintain scenario plausibility, the key idea is to leverage a learned model of traffic motion in the form of a graph-based conditional VAE.
A subsequent optimization is used to find a "solution" to the scenario, ensuring it is useful to improve the given planner.
arXiv Detail & Related papers (2021-12-09T18:03:27Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.