Enhanced Route Planning with Calibrated Uncertainty Set
- URL: http://arxiv.org/abs/2503.10088v1
- Date: Thu, 13 Mar 2025 06:31:42 GMT
- Title: Enhanced Route Planning with Calibrated Uncertainty Set
- Authors: Lingxuan Tang, Rui Luo, Zhixin Zhou, Nicolo Colombo,
- Abstract summary: We introduce the Conformalized Quantile Regression for Graph Autoencoders (CQR-GAE), which leverages the conformal prediction technique to offer a coverage guarantee.<n>We demonstrate the effectiveness of our approach by applying the CQR-GAE model to a real-world traffic scenario.
- Score: 7.7856491832713415
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper investigates the application of probabilistic prediction methodologies in route planning within a road network context. Specifically, we introduce the Conformalized Quantile Regression for Graph Autoencoders (CQR-GAE), which leverages the conformal prediction technique to offer a coverage guarantee, thus improving the reliability and robustness of our predictions. By incorporating uncertainty sets derived from CQR-GAE, we substantially improve the decision-making process in route planning under a robust optimization framework. We demonstrate the effectiveness of our approach by applying the CQR-GAE model to a real-world traffic scenario. The results indicate that our model significantly outperforms baseline methods, offering a promising avenue for advancing intelligent transportation systems.
Related papers
- Representation-based Reward Modeling for Efficient Safety Alignment of Large Language Model [84.00480999255628]
Reinforcement Learning algorithms for safety alignment of Large Language Models (LLMs) encounter the challenge of distribution shift.<n>Current approaches typically address this issue through online sampling from the target policy.<n>We propose a new framework that leverages the model's intrinsic safety judgment capability to extract reward signals.
arXiv Detail & Related papers (2025-03-13T06:40:34Z) - Global-Decision-Focused Neural ODEs for Proactive Grid Resilience Management [50.34345101758248]
We propose predict-all-then-optimize-globally (PATOG), a framework that integrates outage prediction with globally optimized interventions.<n>Our approach ensures spatially and temporally coherent decision-making, improving both predictive accuracy and operational efficiency.<n>Experiments on synthetic and real-world datasets demonstrate significant improvements in outage prediction consistency and grid resilience.
arXiv Detail & Related papers (2025-02-25T16:15:35Z) - Selecting Critical Scenarios of DER Adoption in Distribution Grids Using Bayesian Optimization [0.0]
We develop a new methodology to select scenarios of DER adoption most critical for distribution grids.<n>We propose a highly efficient search framework based on multi-objective Bayesian Optimization.<n>Case studies on realistic feeders with 200-400 buses demonstrate the effectiveness and accuracy of our approach.
arXiv Detail & Related papers (2025-01-23T22:20:30Z) - An End-to-End Smart Predict-then-Optimize Framework for Vehicle Relocation Problems in Large-Scale Vehicle Crowd Sensing [10.74565749809106]
Vehicle systems often exhibit biased coverage due to the nature of trip requests and routes.<n>We develop an end-to-end Smart Predict-then-optize (SPO) framework by integrating optimization into prediction.<n>The framework is trained by task-specific matching rather than the upstream prediction error.
arXiv Detail & Related papers (2024-11-27T15:16:22Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - End-to-end Conditional Robust Optimization [6.363653898208231]
Conditional Robust Optimization (CRO) combines uncertainty quantification with robust optimization to promote safety and reliability in high stake applications.
We propose a novel end-to-end approach to train a CRO model in a way that accounts for both the empirical risk of the prescribed decisions and the quality of conditional coverage of the contextual uncertainty set that supports them.
We show that the proposed training algorithms produce decisions that outperform the traditional estimate then optimize approaches.
arXiv Detail & Related papers (2024-03-07T17:16:59Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
We propose a model predictive control approach for autonomous vehicles that exploits learned Gaussian processes for predicting human driving behavior.
A multi-mode predictive control approach considers the possible intentions of the human drivers.
arXiv Detail & Related papers (2023-03-08T17:14:57Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Deep-Ensemble-Based Uncertainty Quantification in Spatiotemporal Graph
Neural Networks for Traffic Forecasting [2.088376060651494]
We focus on a diffusion convolutional recurrent neural network (DCRNN), a state-of-the-art method for short-term traffic forecasting.
We develop a scalable deep ensemble approach to quantify uncertainties for DCRNN.
We show that our generic and scalable approach outperforms the current state-of-the-art Bayesian and a number of other commonly used frequentist techniques.
arXiv Detail & Related papers (2022-04-04T16:10:55Z) - Application-Driven Learning: A Closed-Loop Prediction and Optimization Approach Applied to Dynamic Reserves and Demand Forecasting [41.94295877935867]
We present application-driven learning, a new closed-loop framework in which the processes of forecasting and decision-making are merged and co-optimized.
We show that the proposed methodology is scalable and yields consistently better performance than the standard open-loop approach.
arXiv Detail & Related papers (2021-02-26T02:43:28Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.