論文の概要: Tensor-Based Binary Graph Encoding for Variational Quantum Classifiers
- arxiv url: http://arxiv.org/abs/2501.14185v1
- Date: Fri, 24 Jan 2025 02:26:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:56:02.643809
- Title: Tensor-Based Binary Graph Encoding for Variational Quantum Classifiers
- Title(参考訳): 変分量子分類器のためのテンソルベースバイナリグラフ符号化
- Authors: Shiwen An, Konstantinos Slavakis,
- Abstract要約: 変分量子(VQC)を用いたグラフ分類のための新しい量子符号化フレームワークを提案する。
グラフ符号化に適したより複雑な回路を構築することにより、VQCが現在の量子ハードウェアの制約内でグラフを効果的に分類できることを実証する。
- 参考スコア(独自算出の注目度): 3.5051814539447474
- License:
- Abstract: Quantum computing has been a prominent research area for decades, inspiring transformative fields such as quantum simulation, quantum teleportation, and quantum machine learning (QML), which are undergoing rapid development. Within QML, hybrid classical-quantum algorithms like Quantum Neural Networks (QNNs) and Variational Quantum Classifiers (VQCs) have shown promise in leveraging quantum circuits and classical optimizers to classify classical data efficiently.Simultaneously, classical machine learning has made significant strides in graph classification, employing Graph Neural Networks (GNNs) to analyze systems ranging from large-scale structures like the Large Hadron Collider to molecular and biological systems like proteins and DNA. Combining the advancements in quantum computing and graph classification presents a unique opportunity to develop quantum algorithms capable of extracting features from graphs and performing their classification effectively. In this paper, we propose a novel quantum encoding framework for graph classification using VQCs. Unlike existing approaches such as PCA-VQC, which rely on dimensionality reduction techniques like Principal Component Analysis (PCA) and may lead to information loss, our method preserves the integrity of graph data. Furthermore, our encoding approach is optimized for Noise-Intermediate Scale Quantum (NISQ) devices, requiring a limited number of qubits while achieving comparable or superior classification performance to PCA-VQC. By constructing slightly more complex circuits tailored for graph encoding, we demonstrate that VQCs can effectively classify graphs within the constraints of current quantum hardware.
- Abstract(参考訳): 量子コンピューティングは、量子シミュレーション、量子テレポーテーション、量子機械学習(QML)など、急速に発展している変革的分野を刺激する数十年間、顕著な研究領域であった。
QMLでは、量子ニューラルネットワーク(QNN)や変分量子分類器(VQC)のようなハイブリッドな古典量子量子アルゴリズムが、量子回路と古典最適化器を利用して古典的なデータを効率的に分類することを約束している。
量子コンピューティングとグラフ分類の進歩を組み合わせることで、グラフから特徴を抽出し、それらの分類を効果的に実行する量子アルゴリズムを開発するユニークな機会が得られる。
本稿では,VQCを用いたグラフ分類のための新しい量子符号化フレームワークを提案する。
主成分分析(PCA)のような次元削減技術に依存するPCA-VQCのような既存手法とは異なり,本手法はグラフデータの整合性を保っている。
さらに、この符号化手法はノイズ中間量子(NISQ)デバイスに最適化されており、PCA-VQCに匹敵する、あるいは優れた分類性能を達成しつつ、限られた数の量子ビットを必要とする。
グラフ符号化に適したより複雑な回路を構築することにより、VQCが現在の量子ハードウェアの制約内でグラフを効果的に分類できることを実証する。
関連論文リスト
- Adiabatic training for Variational Quantum Algorithms [0.4374837991804085]
本稿では3要素からなる新しいハイブリッド量子機械学習(QML)モデルを提案する。
量子ニューラルネットワーク(QNN)を表す変分量子アルゴリズム(VQA)を実行するゲートベース量子コンピュータ
VQAの最適パラメータを見つけるために最適化関数が実行される断熱量子コンピュータ。
論文 参考訳(メタデータ) (2024-10-24T10:17:48Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Positional Encodings for Graph Neural Networks [1.9791587637442671]
本稿では,量子コンピュータを用いて得られたグラフニューラルネットワークに適した位置符号化の新たなファミリを提案する。
私たちのインスピレーションは、量子処理ユニットの最近の進歩に起因しています。
論文 参考訳(メタデータ) (2024-05-21T17:56:33Z) - Hybrid Quantum Graph Neural Network for Molecular Property Prediction [0.17747993681679466]
我々は,ペロブスカイト材料の形成エネルギーを予測するために,自由ハイブリッド量子勾配古典畳み込みグラフニューラルネットワークを開発した。
我々の研究は、量子特徴符号化とパラメトリック量子回路が複雑な機械学習アルゴリズムを劇的に改善する方法を探求する新たな道筋を示唆している。
論文 参考訳(メタデータ) (2024-05-08T16:43:25Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
変分量子アルゴリズム(VQA)は、量子デバイス上で量子アドバンテージを達成するための最も有望な候補の1つである。
クライアントのプライベートデータは、そのような量子クラウドモデルで量子サーバにリークされる可能性がある。
量子サーバが暗号化データを計算するための新しい量子ホモモルフィック暗号(QHE)スキームが構築されている。
論文 参考訳(メタデータ) (2023-01-25T07:00:13Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine learning framework [48.491303218786044]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
まず、量子力学とグラフ理論の相関関係について、量子コンピュータが有用な解を生成できることを示す。
本稿では,その実践性と適用性について,一般的なグラフ学習手法について概説する。
今後の研究の触媒として期待される量子グラフ学習のスナップショットを提供する。
論文 参考訳(メタデータ) (2022-02-19T02:56:47Z) - Efficient Discrete Feature Encoding for Variational Quantum Classifier [3.7576442570677253]
変分量子分類(VQC)は、量子的に有利な方法の一つである。
本稿では,量子ランダムアクセス符号化(QRAC)を用いて,離散的特徴をVQCの量子ビット数に効率的にマッピングする手法を提案する。
QRACがVQCのトレーニングを高速化するためには,マッピングのキュービット数を節約することで,パラメータを削減できることを実験的に示す。
論文 参考訳(メタデータ) (2020-05-29T04:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。